
STAINLESS STEEL HIGH PRESSURE FILTERS

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

HYDRAULIC FILTRATION PRODUCTS

	age INTRODUCTION
2	INDEX
4	COMPANY PROFILE
8	PRODUCT RANGE
11	CONTAMINATION MANAGEMENT
22	FILTER SIZING
24	CORRECTIVE FACTOR
26	SELECTION SOFTWARE

			up to	Qmax
(28)	bage	SUCTION FILTERS	l/min	gpm
31	STR & MPA - MPM	Submerged suction filter, with bypass or magnetic filter	1000	264
38	SFEX	In-line filter with plastic bowl	100	26
49	SF2 250 - 350	Semi-submerged positive head suction filter, low flow rate	160	42
57	SF2 500	Semi-submerged positive head suction filter, high flow rate	700	185
679	CLOGGING INDICATORS			

			up to	P _{max}	up to	Q _{max}
(66) F	age	RETURN FILTERS	bar	psi	l/min	gpm
68	RFEX	Return filter, tank mounted filter suitable for all mineral oil and water glycol applications	16	232	260	69
78	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
106	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
114	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
132	MFBX	Bowl assembly	8	116	700	185
141	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
169	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
187	MFB	Bowl assembly	8	116	700	185
195	MDH	Heavy industrial applications integrated in the tank - air separation	10	145	500	132
203	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
227	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
239	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	2500	660
255	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	615	162
262	ACCESSORIES				•	

680 CLOGGING INDICATORS

			up to	P _{max}	up to	Q _{max}
(264) p	age	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
266	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	250	66
279	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	120	32
682	CLOGGING INDICATORS			,		

			up to	P _{max}	up to	Q _{max}
288 F	bage	SPIN-ON FILTERS	bar	psi	l/min	gpm
291	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
684	CLOGGING INDICATORS					

INDEX

			up to	P _{max}	up to	Q _{max}
(306 p	age	LOW & MEDIUM PRESSURE FILTERS	bar	psi	l/min	gpm
308	LFEX	In-line filter with plastic bowl	16	232	300	79
319	LMP 110 - 120 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	175	46
335	LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	365	96
345	LMP 400 - 401 & 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	780	206
357	LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
365	LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	4500	1189
377	LMD 211	In-line duplex medium pressure filter	60	870	200	53
385	LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	600	159
401	LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
409		Filter elements designed according to DIN 24550				
411	LDP - LDD	In-line and duplex medium pressure filter	60	870	360	95
421	LMP 900 - 901	In-line low pressure filter	30	435	2000	528
429	LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
438	ACCESSORIES					

686 CLOGGING INDICATORS

_			up to	P _{max}	up to	Q _{max}
(440 F	bage	HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
442	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
451	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	300	79
461	FHA 051	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	150	40
469	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
477	FMP	Filter high pressure, high flow rate applications	320	4641	500	132
489	FHP	Typical high pressure filter for mobile applications, high flow rate	450	6527	630	166
509	FHM	High pressure filter with intermediate manifold construction	320	4641	400	106
527	FHB	High pressure for block mounting	320	4641	485	128
541	FHF 325	In-line manifold top mounting	350	5076	550	145
551	FHD	In-line duplex high pressure filter	350	5076	250	66
565	HPB	Pressure filter kits for integration in control manifolds	420	6092	300	79
687	CLOGGING INDICATORS					

_			up to	D P _{max}	up to	Q _{max}
(574) p	age	STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	l/min	gpm
577	FZP	In-line pressure filter with threaded mount	420	6092	160	42
587	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
597	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
605	FZM	Manifold top mounting	320	4641	70	18
613	FZB	Manifold side mounting	320	4641	70	18
621	FZD	Duplex pressure filter for continuous operation requirements	350	5076	60	16
688	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q max
632 page		FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	bar	psi	l/min	gpm
634	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
643	FZP	In-line pressure filter with threaded mount	700	10153	80	21
653	FZH	In-line pressure filter with threaded mount for higher pressure	1000	14504	10	3
663	FZX	In-line pressure filter with threaded mount up to 1000 bar	320	4641	70	18
689	CLOGGING INDICATORS					

669 page

CLOGGING INDICATORS

674 QUICK REFERENCE GUIDE

679 DESIGNATION AND ORDERING CODES

690 TECHNICAL DATA

MARKET **LEADER**

Our work is based on a skillful interaction between advanced technology and fine workmanship, **customizing products according to specific market requests**, focusing strongly on innovation and quality, and following every step in the manufacturing of both standard and special products, fully respecting customer expectations.

Our customer-oriented philosophy, which enables us to satisfy all customer requests **rapidly** and **with personalized products**, makes us a **dynamic and flexible enterprise**. The possibility of constantly controlling and monitoring the entire production process is essential to allow us to guarantee the quality of our products.

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts **9** business branches

TECHNOLOGY

Our constant **quest for excellence in quality and technological innovation** allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means we can rely entirely on our own resources, without resorting to external providers. This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring fully-automated workstations capable of 24-hour production.

MPALTRI —

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with
- shut off valve
- In tank
- with flooded suction

RETURN **FILTERS**

Flow rates up to 3000 l/min

Pressure up to 20 bar

Mounting: - In-Line - Tank top - In single

and duplex designs

RETURN / SUCTION **FILTERS**

Flow rates up to 300 l/min

Pressure up to 80 bar

Mounting: - In-Line - Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting: - In-Line - Tank top

Pressure

Mounting:

- In-Line
- Parallel manifold version
- In single

LOW & MEDIUM PRESSURE **FILTERS**

Flow rates up to 3000 l/min

up to 80 bar

- and duplex designs

PRESSURE FILTERS

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

- Mounting:
- In-Line
- Manifold
- In single

and duplex designs

Introduction

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure, ATEX filters) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 150 l/min

Pressure from 320 bar up to 1000 bar

Mounting:

- In-Line
- Manifold
- In single

and duplex designs

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

Flow rates up to 154 l/min

Pressure from 420 bar up to 1000 bar

Mounting: - In-Line

CONTAMINATION CONTROL SOLUTIONS

Off-line, in-line particle counters Off-line bottle sampling products

- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols
 Mobile Flltration Units with flow rates from 15 I/min up to 200 I/min

POWER TRANSMISSION PRODUCTS

 Aluminium bell-housings for motors

- from 0.12 kW to 400 kW
- Couplings in Aluminium
- Cast Iron Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and

- air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve
- selectors
- Pipe fixing brackets
- Pressure gauges

Introduction

CONTAMINATION MANAGEMENT

INDEX

		Page
1	HYDRAULIC FLUIDS	12
2	FLUIDS CONTAMINATION	12
3	EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	12
4	MEASURING THE SOLID CONTAMINATION LEVEL	13
5	FILTRATION TECHNOLOGIES	16
6	RECOMMENDED CONTAMINATION CLASSES	17
7	TYPES OF FILTERS	17
8	FILTER SIZING PARAMETERS	18
9	APPLICABLE STANDARDS FOR FILTER DEVELOPMENT	18
10	WATER IN HYDRAULIC AND LUBRICATING FLUIDS	19
(11)		20

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces. The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most popular classification criterion divides them into the following families: - MINERAL OILS

Commonly used oil deriving fluids.

- FIRE RESISTANT FLUIDS Fluids with intrinsic characteristics of incombustibility or high flash point.
- SYNTHETIC FLUIDS Modified chemical products to obtain specific optimized features.
- ECOLOGICAL FLUIDS

Synthetic or vegetable origin fluids with high biodegradability characteristics.

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY
- It identifies the fluid's resistance to sliding due to the impact of the particles forming it.
- KINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid density.

Kinematic viscosity varies with temperature and pressure variations.

- VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

- WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

- COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

- HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

(12)

- ANTIOXIDANT STABILITY AND WEAR PROTECTION These features translate into the capacity of a hydraulic oil to avoid corr
- These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.
- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

2 FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.
- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION
- For example rust, slag, metal particles, fibers, rubber particles, paint particles
- or additives
- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

3 EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely, but it can be effectively controlled by appropriate devices.

CONTAMINATION IN PRESENCE OF LARGE TOLERANCES

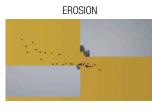
cars alterestern "Attor

CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- ABRASION OF SURFACES

Cause of leakage through mechanical seals, reduction of system performance, failures.



- SURFACE EROSION

Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.

- ADHESION OF MOVING PARTS Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE Cause of breakdowns and components breakdown.

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

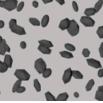
- DECAY OF LUBRICANT PERFORMANCE Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION Cause of worsening in the filterability feature
- ICE CREATION AT LOW TEMPERATURES Cause damage to the surface
- ADDITIVE DEPLETION Free water retains polar additives

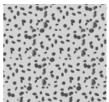
Gaseous contamination mainly results in decay of system performance.

- CUSHION SUSPENSION Cause of increased noise and cavitation.
- FLUID OXIDATION Cause of corrosion acceleration of metal parts.

- MODIFICATION OF FLUID PROPERTIES (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY)
 Cause of system's reduction of efficiency and of control.
 It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.
- MAINTENANCE Increase maintenance activities, spare parts, machine stop costs.
- ENERGY AND EFFICIENCY Efficiency and performance reduction due to friction, drainage, cavitation.

4 MEASURING THE SOLID CONTAMINATION LEVEL


The level of contamination of a system identifies the amount of contaminant contained in a fluid.


This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.

What is the size of the contaminating particles that we must handle in our hydraulic circuit?

HUMAN HAIR (75 µm)

MINIMUM DIMENSION VISIBLE WITH HUMAN EYES (40 µm)

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment.

To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

MEMBRANE

Contaminated Membrane

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Automatic Particle Analisers (APCs).

Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations. NAS 1638 is still used although obsolete.

Classification example according to ISO 4406

The International Standards Organization standard ISO 4406 is the preferred method of quoting the number of solid contaminant particles in a sample. The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. The measurement is performed by Automatic Particle Analisers (APCs) or Particle Contamination Monitors (PCMs).

The numbers represent a code which identifies the number of particles of certain sizes in 1ml of fluid. Each code number has a particular size range. The first scale number represents the number of particles equal to or larger than 4 $\mu m_{(c)}$ per millilitre of fluid;

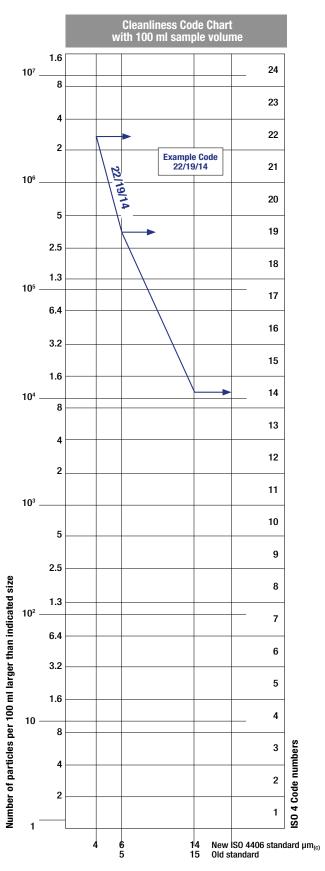
The second scale number represents the number of particles equal to or larger than 6 μ m_(c) per millilitre of fluid;

The third scale number represents the number of particles equal to or larger than 14 $\mu m_{(\!C\!)}$ per millilitre of fluid.

|--|

()) MPALTRI

Class	Number of pa	articles per ml
	Over	Up to
28	1 300 000	2 500 000
27	640 000	1 300 000
26	320 000	640 000
25	160 000	320 000
24	80 000	160 000
23	40 000	80 000
22	20 000	40 000
21	10 000	20 000
20	5 000	10 000
19	2 500	5 000
18	1 300	2 500
17	640	1 300
16	320	640
15	160	320
14	80	160
13	40	80
12	20	40
11	10	20
10	5	10
9	2.5	5
8	1.3	2.5
7	0.64	1.3
6	0.32	0.64
5	0.16	0.32
4	0.08	0.16
3	0.04	0.08
2	0.02	0.04
1	0.01	0.02
0	0	0.01
> $4 \mu m_{(c)} = 350$ particles > $6 \mu m_{(c)} = 100$ particles		


> $6 \mu m_{(c)} = 100 \text{ particles}$ > $14 \mu m_{(c)} = 25 \text{ particles}$

16/14/12

ISO 4406 Cleanliness Code System

Microscope counting examines the particles differently to APCs and the code is given with two scale numbers only.

These are at 5 μm and 15 μm equivalent to the 6 $\mu m_{(c)}$ and 14 $\mu m_{(c)}$ of APCs.

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE SAE AS4059-1 and SAE AS4059-2

Classification example according to SAE AS4059 - Rev. G

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

This SAE Aerospace Standard (AS) defines cleanliness levels for particulate contamination of hydraulic fluids and includes methods of reporting data relating to the contamination levels. Tables 1 and 2 below provide differential and cumulative particle counts respectively for counts obtained by an automatic particle counter, e.g. LPA3.

Table 1 ·	- Class for	differential	measurement
-----------	-------------	--------------	-------------

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml						
	5-15 µm	15-25 µm	25-50 µm	50-100 µm	>100 µm	(1)	
	6-14 μm _(c)	14-21 µm _(c)	21-38 µm _(c)	38-70 μm _(c)	>70 µm _(c)	(2)	
00	125	22	4	1	0		
0	250	44	8	2	0	-	
1	500	89	16	3	1		
2	1 000	178	32	6	1	_	
3	2 000	356	63	11	2		
4	4 000	712	126	22	4		
5	8 000	1 425	253	45	8	_	
6	16 000	2 850	506	90	16		
7	32 000	5 700	1 012	180	32		
8	64 000	11 400	2 025	360	64		
9	128 000	22 800	4 050	720	128	_	
10	256 000	45 600	8 100	1 440	256	_	
11	512 000	91 200	16 200	2 880	512	_	
12	1 024 000	182 400	32 400	5 760	1 024	_	

6 - 14 μm _(c) = 15	000 particles
$14 - 21 \ \mu m_{(c)} = 2$	2 200 particles
21 - 38 µm _(c) =	200 particles
38 - 70 μm _(c) =	35 particles
> 70 µm _(c) =	3 particles

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent

SAE AS4059 REV G - Class 6

Table 2 - Class for cumulative measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml					
	>1 µm	>5 µm	>15 µm	>25 µm	>50 µm	>100 µm (1)
	>4 µm _(c)	>6 µm _(c)	$>14 \ \mu m_{(c)}$	$>21 \ \mu m_{(c)}$	$>38 \ \mu m_{(c)}$	>70 µm _(c) (2)
000	195	76	14	3	1	0
00	390	152	27	5	1	0
0	780	304	54	10	2	0
1	1 560	609	109	20	4	1
2	3 120	1 217	217	39	7	1
3	6 250	2 432	432	76	13	2
4	12 500	4 864	864	152	26	4
5	25 000	9 731	1 731	306	53	8
6	50 000	19 462	3 462	612	106	16
7	100 000	38 924	6 924	1 224	212	32
8	200 000	77 849	13 849	2 449	424	64
9	400 000	155 698	27 698	4 898	848	128
10	800 000	311 396	55 396	9 796	1 696	256
11	1 600 000	622 792	110 792	19 592	3 392	512
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024

 $> 4 \ \mu m_{(c)} = 45 \ 000 \ particles$ $> 6 \ \mu m_{(c)} = 15 \ 000 \ particles$ $> 14 \ \mu m_{(c)} = 15 \ 000 \ particles$ $> 21 \ \mu m_{(c)} = 250 \ particles$ $> 38 \ \mu m_{(c)} = 15 \ particles$ $> 38 \ \mu m_{(c)} = 3 \ particles$ $> 70 \ \mu m_{(c)} = 3 \ particle$ SAE AS4059 REV G cpc* Class 6 6/6/5/5/4/2 Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter.
 Contamination classes and particle count limits are identical to NAS 1638. - CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

The coding system defines the maximum numbers permitted of 100 ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri APC's.

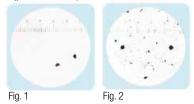
The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket.

Size Range Classes (in	microns)	i
------------------------	----------	---

Maximum Contamination Limits per 100 ml						
Class	5-15	15-25	25-50	50-100	>100	
00	125	22	4	1	0	
0	250	44	8	2	0	
1	500	89	16	3	1	
2	1 000	178	32	6	1	
3	2 000	356	63	11	2	
4	4 000	712	126	22	4	
5	8 000	1 425	253	45	8	
6	16 000	2 850	506	90	16	
7	32 000	5 700	1 012	180	32	
8	64 000	11 400	2 025	360	64	
9	128 000	22 800	4 050	720	128	
10	256 000	45 600	8 100	1 440	256	
11	512 000	91 200	16 200	2 880	512	
12	1 024 000	182 400	32 400	5 760	1 024	

5-15 µm	= 4	42 000 particles
15-25 µm	=	2 200 particles
25-50 µm	=	150 particles
50-100 µm	=	18 particles
> 100 µm	=	3 particles
Class NAS 8	3	

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407


The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

MICROSCOPE CONTROL

COMPARISON PHOTOGRAPH'S 1 graduation = 10um

Example figure 1 and 2

For other comparison photographs for contamination classes see the "Fluid Condition and Filtration Handbook".

cumulative particle count

- CLEANLINESS CODE COMPARISON

Although ISO 4406 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406	SAE AS4059 Table 2	SAE AS4059 Table 1	NAS 1638
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9B	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14 / 12 / 09	4A / 3B / 3C	3	3

5 FILTRATION TECHNOLOGIES

Various mechanisms such as mechanical stoppage, magnetism, gravimetric deposit, or centrifugal separation can be used to reduce the level of contamination.

The mechanical stoppage method is most effective and can take place in two ways:

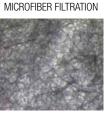
- SURFACE FILTRATION

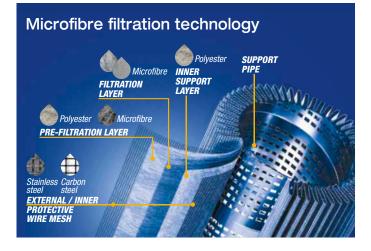
It is by direct interception. The filter prevents particles larger than the pores from continuing in the plant / system. Surface filters are generally manufactured with metal canvases or meshes.

- DEPTH FILTERING

Filters are constructed by fiber interlacing. Such wraps form pathways of different shapes and sizes in which the particles remain trapped when they find smaller apertures than their diameter.

Depth filters are generally produced with papers impregnated with phenolic resins, metal fibers or inorganic fibers.


In inorganic fiber filtration, commonly called microfibre, the filtering layers are often overlapped in order to increase the ability to retain the contaminant.


WIRE MESH FILTRATION

PAPER FILTRATION

The filtration efficiency of metallic mesh filtrations is defined as the maximum particle size that can pass through the meshes of the filtering grid.

The efficiency of microfibre and paper filtration ($\mathcal{B}_{x(c)}$) is defined through a lab test called Multipass Test. The efficiency value ($\mathcal{B}_{x(c)}$) is defined as the ratio between the number of particles of certain dimensions detected upstream and downstream of the filter.

Upstream particles number > X μ m_(c)

 $\frac{1}{\text{Downstream particles number} > X \ \mu m_{(c)}} = \beta_{X(c)}$

Value ($B_{x(c)}$)	2	10	75	100	200	1000
Efficiency	50%	90%	98.7%	99%	99.5%	99.9%

Test conditions, such as type of fluid to be used (MIL-H-5606), type of contaminant to be used (ISO MTD), fluid viscosity, test temperature, are determined by ISO 16889.

In addition to the filtration efficiency value during the Multipass test, other important features, such as filtration stability (β stability) and dirt holding capacity (DHC), are also tested.

Poor filtration stability is the cause of the filtering quality worsening as the filter life rises. Low dirt holding capacity causes a reduction in the life of the filter.

Filtration ISO Standard Comparison						
$\beta_{\rm X(C)} > 1000$	$\beta_{\rm X} > 200$	MP Filtri				
ISÓ 16889	ISO 4572	Filter media code				
5 μm _(c)	3 µm	A03				
7 μm _(c)	6 µm	A06				
10 µm _(c)	10 µm	A10				
16 µm _(c)	18 µm	A16				
21 µm _(c)	25 µm	A25				

)) **MPAILTRI**' _

(6) RECOMMENDED CONTAMINATION CLASSES

Any are the nature and the properties of fluids, they are inevitably subject to contamination. The level of contamination can be managed by using special components called filters.

Hydraulic components builders, knowing the problem of contamination, recommend the filtration level appropriate to the use of their products.

Example of recommended contamination levels for pressures below 140 bar.

Piston pumps						
with fixed flow rate	•					
Piston pumps			•			
with variable flow rate			•			
Vane pumps						
with fixed flow rate		•				
Vane pumps			•			
with variable flow			•			
Engines	•					
Hydraulic cylinders	•					
Actuators					•	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					•	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	B _{21(c)}	B15(c)	B10(c)	В 7(с)	B7(c)	B _{5(c)}
filtration $B_{x(c)\geq 1.000}$	>1000	>1000	>1000	>1000	>1000	>1000
MP Filtri media code	A25	A16	A10	A06	A06	A03

The common classification of filters is determined by their position in the plant.

7 TYPES OF FILTERS

Suction filters

They are positioned before the pump and are responsible for protecting the pump from dirty contaminants. It also provides additional flow guidance to the pump suction line.

Being subject to negligible working pressures are manufactured with simple and lightweight construction.

They are mainly produced with gross grade surface filtrations, mainly 60 \div 125 $\mu m.$ They can be equipped with a magnetic filter for retaining ferrous particles.

They are generally placed under the fluid head to take advantage of the piezometric thrust of the fluid and reduce the risk of cavitation.

There are two types of suction filters:

- IMMERSION FILTERS

Simple filter element screwed on the suction pipe

- FILTERS WITH CONTAINER

Container filters that are more bulky, but provide easier maintenance of the tank

Delivery (or Pressure) filters

They are positioned between the pump and most sensitive regulating and controlling components, such as servo valves or proportional valves, and are designed to ensure the class of contamination required by the components used in the circuit.

Being subjected to high working pressures are manufactured with more robust and articulated construction. In particular situations of corrosive environments or aggressive fluids can be made of stainless steel.

They are mainly produced with filtering depths of 3 \div 25 $\mu m.$

They can be manufactured with in-line connections, with plate or flange connections or directly integrated into the circuit control blocks / manifolds. They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the plant / system is in operation without interruption of the working cycle.

Return filters

They are positioned on the return line to the tank and perform the task of filtering the fluid from particles entering the system from the outside or generated by the wear of the components.

They are generally fixed to the reservoir (for this reason also called top tank mounted), positioned semi-immersed or completely immersed.

The positioning of the return filters must guarantee in all operating conditions that the fluid drainage takes place in immersed condition; this is to avoid creating foams in the tank that can cause malfunctions or cavitation in the pumps.

For the sizing of the return filters, account must be taken of the presence of accumulators or cylinders that can make the return flow considerably greater than the pump suction flow rate.

Being subject to contained working pressures are manufactured with simple and lightweight construction.

Normally it is possible to extract the filter element without disconnecting the filter from the rest of the system.

Combined filters

They are designed to be applied to systems with two or more circuits. They are commonly used in hydrostatic transmission machines where they have a dual filtration function of the return line and suction line of the hydrostatic transmission pump.

The filter is equipped with a valve that keeps the 0.5 bar pressure inside the filter. A portion of the fluid that returns to the tank is filtered by the return filter element, generally produced with absolute filtration, and returns to the transmission booster pump.

Only excess fluid returns to the tank through the valve.

The internal pressure of the filter and the absolute filtration help to avoid the cavitation phenomenon inside the pump.

Off-line filters

They are generally used in very large systems / plants, placed in a closed circuit independent from the main circuit. They remain in operation regardless of the operation of the main circuit and are crossed by a constant flow rate.

They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the unit is in operation without interruption of the work cycle.

Venting filters

During the operation of the plants, the fluid level present in the reservoir changes continuously.

The result of this continuous fluctuation is an exchange of air with the outside environment.

The venting filter function, positioned on the tank, is to filter the air that enters the tank to compensate for fluid level variations.

(8) FILTER SIZING PARAMETERS

The choice of the filter system for an hydraulic system is influenced by several factors.

It is necessary to consider the characteristics of the various components present in the plant and their sensitivity to contamination.

It is also necessary to consider all the tasks that the filter will have to do within the plant:

- FLUID PROTECTION FROM CONTAMINATION
- PROTECTION OF OLEODYNAMIC COMPONENTS SENSITIVE TO CONTAMINATION
- PROTECTION OF OLEODYNAMIC PLANTS FROM ENVIRONMENTAL WASTE
- PROTECTION OF OLEODYNAMIC PLANTS FROM CONTAMINATION CAUSED BY COMPONENTS' FAILURES

The advantages of proper positioning and sizing of the filters are

- MORE RELIABILITY OF THE SYSTEM
- LONGER LIFE OF THE FLUID COMPONENTS
- REDUCTION OF STOP TIME
- REDUCTION OF FAILURE CASUALITIES

Each hydraulic filter is described by general features that identify the possibility of use in different applications.

• MAXIMUM WORKING PRESSURE (Pmax)

The maximum working pressure of the filter must be greater than or equal to the pressure of the circuit section in which it will be installed.

PRESSURE DROP (ΔP)

The pressure drop depends on a number of factors, such as the working circuit temperature, the fluid viscosity, the filter element cleaning condition.

• WORKING TEMPERATURE (T)

The working temperature deeply affect the choice of materials. Excessively high or low temperatures may adversely affect the strength of the materials or the characteristics of the seals.

FILTRATION EFFICIENCY (%) / FILTRATION RATIO (β_{x(c)})

Filtration efficiency is the most important parameter to consider when selecting a filter.

When choosing the filtration performances, the needs of the most sensitive components in the system must be considered.

• FLUID TYPE

The type of fluid influences the choice of filters in terms of compatibility and viscosity. It is always mandatory to check the filterability.

• PLACEMENT IN THE PLANT

The position of the filter in the system conditions the efficiency of all filter performances.

(9) APPLICABLE STANDARDS FOR FILTER DEVELOPMENT

In order to obtain unique criteria for development and verification of the filters performance, specific regulations for the filters and filter elements testing have been issued by ISO. These norms describe the target, the methodology, the conditions and the presentation methods for the test results.

ISO 2941

Hydraulic fluid power -- Filter elements -- Verification of collapse/burst pressure rating

This Standard describes the method for testing the collapse / burst resistance of the filter elements.

The test is performed by crossing the contaminated fluid filter element at a predefined flow rate. The progressive clogging of the filter element, determined by contamination, causes an increase in differential pressure.

ISO 2942

Hydraulic fluid power -- Filter elements -- Verification of fabrication integrity and determination of the first bubble point

This Standard describes the method to verify the integrity of the assembled filter elements.

It can be used to verify the quality of the production process or the quality of the materials by verifying the pressure value of the first bubble point.

ISO 2943

Hydraulic fluid power -- Filter elements -- Verification of material compatibility with fluids

This Standard describes the method to verify the compatibility of materials with certain hydraulic fluids.

The test is carried out by keeping the element (the material sample) immersed in the fluid under high or low temperature conditions for a given period of time and verifying the retention of the characteristics.

ISO 3723

Hydraulic fluid power -- Filter elements -- Method for end load test

This Standard describes the method for verifying the axial load resistance of the filter elements.

After performing the procedure described in ISO 2943, the designed axial load is applied to the filter element. To verify the test results, then the test described in ISO 2941 is performed.

ISO 3968

Hydraulic fluid power -- Filters -- Evaluation of differential pressure versus flow characteristics

This Standard describes the method for checking the pressure drop across the filter.

The test is carried out by crossing the filter from a given fluid and by detecting upstream and downstream pressures.

Some of the parameters defined by the Standard are the fluid, the test temperature, the size of the tubes, the position of the pressure detection points.

ISO 16889

())) MPALTRI

Hydraulic fluid power -- Filters -- Multi-pass method for evaluating filtration performance of a filter element

This Standard describes the method to check the filtration characteristics of the filter elements.

The test is performed by constant introduction of contaminant (ISO MTD). The characteristics observed during the test are the filtration efficiency and the dirty holding capacity related to the differential pressure.

ISO 23181

Hydraulic fluid power -- Filter elements -- Determination of resistance to flow fatigue using high viscosity fluid

This Standard describes the method for testing the fatigue resistance of the filter elements. The test is carried out by subjecting the filter to continuous flow variations, thus differential pressure, using a high viscosity fluid.

ISO 11170

Hydraulic fluid power -- Sequence of tests for verifying performance characteristics of filter elements

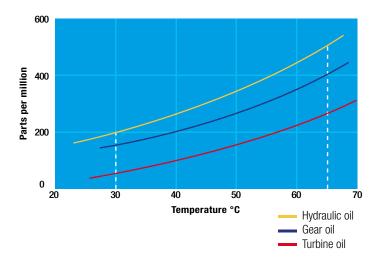
The Standard describes the method for testing the performance of filter elements. The protocol described by the regulations provides the sequence of all the tests described above in order to verify all the working characteristics (mechanical, hydraulic and filtration).

ISO 10771-1

Hydraulic fluid power -- Fatigue pressure testing of metal pressure-containing envelopes -- Test method

This Standard describes the method to check the resistance of the hydraulic components with pulsing pressure.

It can be applied to all metal components (excluding tubes) subject to cyclic pressure used in the hydraulic field.

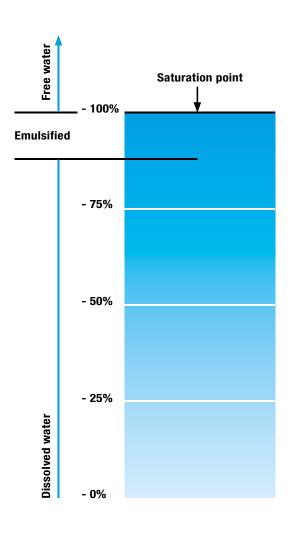

10 WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@40°C) which it can support without adverse consequences.

Once the water content exceeds about 300ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.


Saturation Levels

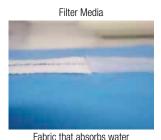
Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

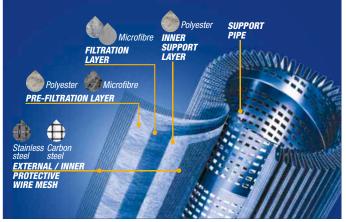
Hydraulic oil @ 30° C = 200 ppm = 100% saturation Hydraulic oil @ 65° C = 500 ppm = 100% saturation

Water absorber


Water is present everywhere, during storage, handling and servicing.

MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.

MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 µm (therefore identified with media designation WA025), providing absolute filtration of solid particles to $B_{X(C)} = 1000$.


Absorbent media is made by water absorbent fibres which increase in size during the absorption process.

Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).

Microfibre filtration technology

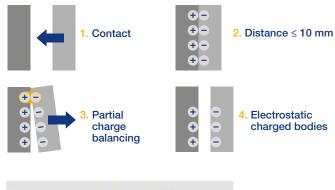
By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

Product availability:

LOW & MEDIUM PRESSURE FILTERS - LMP Series

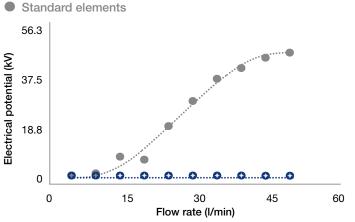
LMP 210	LMP 900
LMP 211	LMP 901
LMP 400	LMP 902
LMP 401	LMP 903
LMP 430	LMP 950


(11) THE ANTI-STATIC FILTERS

zerospark is a specialist solution designed to solve the problem of electrostatic discharge inside hydraulic filters. Caused by the electrical charge build-up due to the passage of oil through the filters, this can result in damage to filter elements, oils and circuit components. It can even cause fire hazards in environments where flammable materials are present.

THE TRIBOELECTRIC EFFECT

The body with the most electronegativity strips electrons from the other, generating a build-up of a net negative charge on itself. The other body is charged by the same amount but with the opposite sign, giving rise to very high potential differences. These, if not dissipated, can give rise to electrostatic discharges.



DISSIPATIVE FILTER ELEMENTS

To solve the problem of charge build-up in filters, MP Filtri has developed an innovative solution. By replacing certain insulating components with conductive zerospark versions, the charges on the media are free to move towards the head and are thus dissipated to the ground.

Under standard working conditions, the potential goes from tens of kV to zero, clearly showing the effectiveness of our dissipative filters.

The following table summarises some examples of test results at the same flow rate and temperature for elements of the same size but made of different materials.

Filter element	Electrical potential (kV)	Current (µA)
Standard glass microfibre	11	-6.0
Dissipative glass microfibre	e 0	-9.0
Standard cellulose	6	-1.3
Dissipative cellulose	0	-2.1
Other glass microfibre	9-15	-7.0
Other glass microfibre	3-8	-16.0

When using a synthetic oil instead of mineral oil, the values and sign of the two electrical quantities may vary.

	Mineral oil	Synthetic oil
Filter element	Electrical p	otential (kV)
Standard glass microfibre	+11	+30
Dissipative glass microfibre	0	~0.0
Standard cellulose	+6	-43
Dissipative cellulose	0	~0.0

INDEX

	Page
CALCULATION	23
CORRECTIVE FACTOR	24

THE CORRECT FILTER SIZING HAS TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

FOR EXAMPLE, THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAVE TO BE IN THE RANGE 0.4 - 0.6 bar / 5.80 - 8.70 psi.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³ / lb/ft³). The filter element pressure drop Δpe is proportional to its viscosity (mm²/s / SUS), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt) / 150 SUS.

Sizing data for single filter element, head at top Δpc = Filter housing pressure drop [bar / psi] Δpe = Filter element pressure drop [bar / psi] Y = Corrective factor Y (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

Q = flow rate (l/min - gpm)

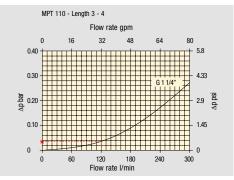
V1 reference oil viscosity = $30 \text{ mm}^2/\text{s}$ (cSt) /150 SUS **V2** = operating oil viscosity in mm²/s (cSt) / SUS

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt) / 150 SUS

International system: $\Delta pe = Y : 1000 \times Q \times (V2:V1)$

Impe rial system: Δpe = Y : 17.2 x Q x (V2:V1)

Δp Tot. = $\Delta pc + \Delta pe$


Verification formula Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Application Ran	ge:[bar]	[psi]	
Suction filters	0.08 - 0.10 bar	1.16 - 1.45 psi	
Return filters	0.4 - 0.6 bar	5.80 - 8.70 psi	
Return - Suction filters	(*) 0.8 - 1.0 bar	11.60 - 14.50 p	si
	0.4 - 0.6 bar	5.80 - 8.70 psi	return lines
Low & Medium	0.3 - 0.5 bar	4.35 - 7.25 psi	lubrication lines
Pressure filters	0.3 - 0.4 bar	4.35 - 5.80 psi	off-line in power systems
	<u>0.1 - 0.3 bar</u>	1.45 - 4.35 psi	off-line in test benches
	0.4 - 0.6 bar	5.80 - 8.7 psi	over-boost
High Pressure filters	0.8 - 1.5 bar	11.60 - 21.75 p	si
Stainless Steel filters	0.8 - 1.5 bar	11.60 - 21.75 p	si

(*) The suction flow rate should not exceed 30% of the return flow rate

Generic filter calculation example Application data: Tank top return filter Pressure Pmax = 10 bar Flow rate Q = 120 l/min Viscosity V2 = 46 mm²/s (cSt) Oil density = 0.86 kg/dm³ Required filtration efficiency = 25 μ m with absolute filtration With bypass valve and G 1 1/4" inlet connection Calculation: **Δpc = 0.03 bar / 0.43 psi** (see graphic below)

Filter housings ∆p pressure drop. The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

$\Delta pe = (2.00): 1000) \times 120 \times (46: 30) = 0.37$ bar $\Delta pe = (2.00): 17.2) \times 32 \times (216: 150) = 5.36$ psi

Filter element			lute filt H Series				i nal filtr N Series		
Туре	A03	A06	A10	A16	A25	P10	P25	M25 M60 M90	
Return filte	rs	74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40
	2	29.20	24.12	8.00	7.22	9.00 5.00	3.33	2.85	2.00
MF 020	2	29.20	19.00	6.56	5.33	4.33	1.68	1.44	1.30
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82

Δp Tot. = 0.03 + 0.37 = 0.4 bar Δp Tot. = 0.43 + 5.36 = 5.79 psi

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters. In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

FILTER SIZING Corrective factor

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity 30 mm²/s

Return filters

1 2 3 1 1 2 3	A03 74.00 29.20 22.00 74.00	A06 50.08 24.12 19.00 50.08	A10 20.00 8.00 6.56	A16 16.00 7.22	A25	P10	P25	M25 M60 M90
2 3 1 1 2	29.20 22.00 74.00	24.12 19.00	8.00		0.00			
3 1 1 2	22.00 74.00	19.00		7 00	9.00	6.43	5.51	4.40
1 1 2	74.00		0.00		5.00	3.33	2.85	2.00
1 2		50.08		5.33	4.33	1.68	1.44	1.30
2	00 00		20.00	16.00	9.00	6.43	5.51	3.40
	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25
3	17.33 10.25	12.50 9.00	6.86 3.65	5.70 3.33	4.00 2.50	3.05 1.63	2.47 1.32	1.10
4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82
1	3 67	3 05	1 64	1.56	1 24	1 18	1.06	0.26
2	1.69	1.37	0.68	0.54	0.51	0.43	0.39	0.12
2	1.69	1.37	0.60	0.49	0.44	0.35	0.31	0.11
1	3.20	2.75	1.39	1.33	1.06	0.96	0.87	0.22
2	2.00	1.87	0.88	0.85	0.55	0.49	0.45	0.13
13	1.90	1.60	0.63	0.51	0.49	0.39	0.35	0.11
1	1.08	0.84	0.49	0.36	0.26	0.21	0.19	0.06
12	3.00	3.04	1.46	1.25	1.17	-	-	M25 0.20
2	1.29	1.26	0.52	0.44	0.38	-	-	M25 0.10
	78.00	48.00	28.00	24.00	9.33	9.33	8.51	1.25
	25.88	20.88	10.44	10.00	3.78	3.78	3.30	1.25
	15.20	14.53	5.14	4.95	2.00	2.00	0.17	1.10
	3.25	2.55	1.55	1.35	0.71	0.71	0.59	0.25
	1.96	1.68	0.85	0.72	0.42	0.42	0.36	0.09
	1.06	0.84	0.42	0.33	0.17	0.17	0.13	0.04
2	3.61	4.08	1.81	1.71	1.35	-	-	M25 0.55
4	2.10	1.70	1.14	0.77	0.53	-	-	0.60
1	19.00	17.00	6.90	6.30	4.60	2.94	2.52	1.60
								1.37
								1.34 1.34
5	4.20	3.84	2.36	2.40	1.90	1.60	1.37	1.34
1	5.35	4.85	2.32	1.92	1,50	1.38	1,20	0.15
2	4.00	3.28	1.44	1.10	1.07	0.96	0.83	0.13
3	2.60	2.20	1.08	1.00	0.86	0.77	0.64	0.12
4	1.84	1.56	0.68	0.56	0.44	0.37	0.23	0.11
1	3.10	2.48	1.32	1.14	0.92	0.83	0.73	0.09 0.08
								0.08
4	1.30	1.20	0.00	0.30	0.20	0.22	0.17	0.00
5	0.74	0.65	0.30	0.28	0.13	0.10	0.08	0.04
1	0.60	0.43	0.34	0.25	0.13	0.12	0.09	0.03
2	0.37	0.26	0.23	0.21	0.11	0.08	0.07	0.03
								0.02
	12 12 3 11 12 12 12 12 12 12 12 12 12 12 12 33 4 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1	1 3.67 2 1.69 12 1.69 12 1.69 1 3.20 2 2.00 3 1.90 11 1.08 12 3.00 12 3.00 12 3.00 12 3.00 12 3.00 12 1.29 12 3.00 12 1.29 1 1.29 1 1.29 1 1.29 1 1.96 2 3.61 4 2.10 1 1.96 2 3.61 4 2.10 3 7.80 4 5.50 5 4.20 1 5.35 2 4.00 3 2.66 3 1.48 4 1.30 5 0.74	I 3.67 3.05 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 1.69 1.37 12 2.00 1.87 3 1.90 1.60 11 1.08 0.84 12 3.00 3.04 12 1.29 1.26 78.00 48.00 2 3.61 4.80 1 1.96 1.453 3.25 2.55 1 1.96 1.68 1.06 0.84 2 3.61 4.08 4 1.06 0.84 2 3.61 4.08 4 1.06 0.84 2 3.61 4.08 4 1.06 3.84 1 1.9.0 17.00 2 4.00	Image Image Image Image 1 3.67 3.05 1.64 1.69 1.37 0.68 12 1.69 1.37 0.60 1 3.20 2.75 1.39 2 2.00 1.87 0.88 3 1.90 1.60 0.63 11 1.08 0.84 0.49 12 3.00 3.04 1.46 12 1.29 1.26 0.52 78.00 48.00 28.00 2 25.88 20.88 10.44 15.20 14.53 5.14 3.25 2.55 1.55 1.96 1.68 0.85 1.96 1.68 0.85 1.96 1.68 0.42 2 3.61 4.08 1.81 4 2.10 1.70 1.14 1 1.90 17.00 6.90 2 1.70 1.80 <	Image Image <thimage< th=""> Image <thi< td=""><td>Image: Constraint of the symbol of</td><td>1 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 12 1.69 1.37 0.68 0.49 0.44 0.35 1 3.20 2.75 1.39 1.33 1.06 0.96 2 2.00 1.87 0.88 0.85 0.55 0.49 3 1.90 1.60 0.63 0.51 0.49 0.39 11 1.08 0.84 0.49 0.36 0.26 0.21 12 3.00 3.04 1.46 1.25 1.17 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.20 14.53 5.14 4.95 2.00 2.00 15.2</td><td>1 0 0 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 1.06 12 1.69 1.37 0.68 0.54 0.51 0.43 0.39 12 1.69 1.37 0.60 0.49 0.44 0.35 0.31 1 3.20 2.75 1.39 1.33 1.06 0.99 0.39 0.35 1 1.90 1.60 0.63 0.51 0.49 0.39 0.35 12 3.00 3.04 1.46 1.25 1.17 12 1.29 1.26 0.52 0.44 0.38 12 1.20 1.26 0.52 0.44 0.38 3.78 3.30 1 15.0 14.53 5.14 4.95 2.00 2.00 0.17 1 1.90 1.68 0.85</td></thi<></thimage<>	Image: Constraint of the symbol of	1 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 12 1.69 1.37 0.68 0.49 0.44 0.35 1 3.20 2.75 1.39 1.33 1.06 0.96 2 2.00 1.87 0.88 0.85 0.55 0.49 3 1.90 1.60 0.63 0.51 0.49 0.39 11 1.08 0.84 0.49 0.36 0.26 0.21 12 3.00 3.04 1.46 1.25 1.17 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.29 1.26 0.52 0.44 0.38 - 12 1.20 14.53 5.14 4.95 2.00 2.00 15.2	1 0 0 0 0 0 0 0 0 12 3.67 3.05 1.64 1.56 1.24 1.18 1.06 12 1.69 1.37 0.68 0.54 0.51 0.43 0.39 12 1.69 1.37 0.60 0.49 0.44 0.35 0.31 1 3.20 2.75 1.39 1.33 1.06 0.99 0.39 0.35 1 1.90 1.60 0.63 0.51 0.49 0.39 0.35 12 3.00 3.04 1.46 1.25 1.17 12 1.29 1.26 0.52 0.44 0.38 12 1.20 1.26 0.52 0.44 0.38 3.78 3.30 1 15.0 14.53 5.14 4.95 2.00 2.00 0.17 1 1.90 1.68 0.85

Return / Suction filters

noturn /									
Filter element	Absolute filtration								
Туре	A10	A16	A25						
1 RSX 116 2	5.12 2.22	4.33 1.87	3.85 1.22						
RSX 165 1 2 RSX 166 3	2.06 1.24 0.94	1.75 1.05 0.86	1.46 0.96 0.61						

Filter eleme	nt	Absolute filtration N Series							
Туре		A03	A03 A06 A10 A16 A25 P10 P25						
	1	16.25 12.62	15.16 10.44	8.75 6.11	8.14 6.02	5.87 4.16	2.86 1.60	2.65 1.49	0.14
CU 110	3	8.57	7.95	5.07	4.07	2.40	1.24	1.15	0.11
	4	5.76	4.05	2.80	2.36	1.14	0.91	0.85	0.05

Low & Medium pressure filters

Filte elen			Abso N	l ute filt -W Serie	r ation es		Nominal filtration N Series			
Туре		A03	A06	A10	A16	A25	P10	P25	M25	
CU 11	0 2 3 4	16.25 12.62 8.57 5.76	15.16 10.44 7.95 4.05	8.75 6.11 5.07 2.80	8.14 6.02 4.07 2.36	5.87 4.15 2.40 1.14	2.86 1.60 1.24 0.91	2.65 1.49 1.15 0.85	0.14 0.12 0.11 0.05	
CU 21	0 2 3	5.30 3.44 2.40	4.80 2.95 1.70	2.00 1.24 0.94	1.66 1.09 0.84	1.32 0.70 0.54	0.56 0.42 0.33	0.43 0.35 0.23	0.12 0.09 0.05	
DN	016 025 040	7.95 5.00 3.13	7.20 4.53 2.66	3.00 1.89 1.12	2.49 1.57 0.98	1.98 1.25 0.63	0.84 0.53 0.38	0.65 0.41 0.32	0.18 0.11 0.08	
CU 40	2 3 4 5 6	3.13 2.15 1.60 1.00 0.82	2.55 1.70 1.28 0.83 0.58	1.46 0.94 0.71 0.47 0.30	1.22 0.78 0.61 0.34 0.27	0.78 0.50 0.40 0.20 0.17	0.75 0.40 0.34 0.24 0.22	0.64 0.34 0.27 0.19 0.18	0.19 0.10 0.08 0.06 0.05	
CU 90	0 1	0.86	0.63	0.32	0.30	0.21	-	-	0.05	
CU 95	io 2 3	1.03 0.44	0.80 0.40	0.59 0.27	0.40 0.18	0.26 0.15	-	-	0.05 0.02	
MR 6	30 7	0.88	0.78	0.36	0.34	0.16	0.12	0.96	0.47	

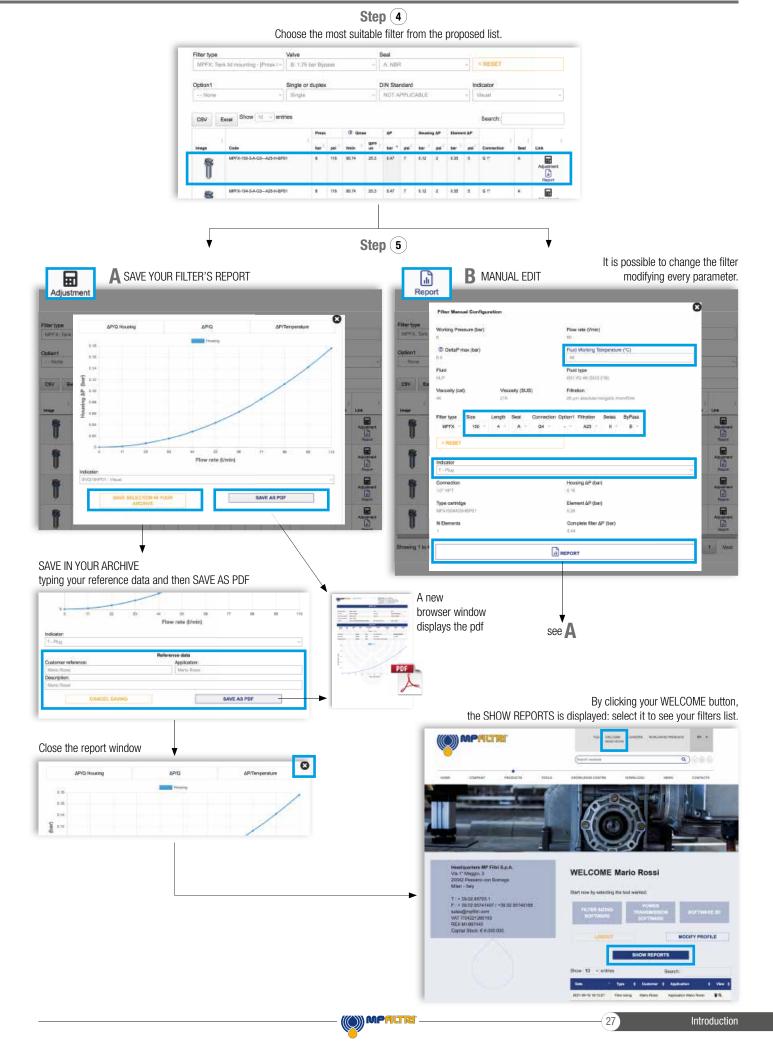
Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity 30 mm²/s

High pressure filters

Stainless steel high pressure filters and Filters for potentially explosive atmosphere

Filter	лс			olute filtra	tion		Nominal filtration
elemer	nt			N - R Serie			N Series
Туре		A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
HP 011	2	220.28	165.56	74.08	59.13	37.05	-
	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050	3	17.37	16.25	8.90	7.18	3.63	1.25
	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	58.50	43.46	23.16	19.66	10.71	1.28
HP 065	2	42.60	25.64	16.22	13.88	7.32	1.11
	3	20.50	15.88	8.18	6.81	3.91	0.58
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01
	1	17.53	15.91	7.48	6.96	5.94	1.07
HP 150	2	8.60	8.37	3.54	3.38	3.15	0.58
	3	6.53	5.90	2.93	2.79	2.12	0.49
	1	10.88	9.73	5.02	3.73	2.54	1.04
HP 320	2	4.40	3.83	1.75	1.48	0.88	0.71
NF 320	3	2.75	2.11	1.05	0.87	0.77	0.61
	4	2.12	1.77	0.98	0.78	0.55	0.47
	1	4.44	3.67	2.30	2.10	1.65	0.15
	2	3.37	2.77	1.78	1.68	1.24	0.10
HP 500	3	2.22	1.98	1.11	1.09	0.75	0.08
	4	1.81	1.33	0.93	0.86	0.68	0.05
	5	1.33	1.15	0.77	0.68	0.48	0.04
Filter elemer	nt_				lute filtrati N Series	on	
Туре		A03	A06	A10	A16	A25	M25
	1	3.65	2.95	2.80	1.80	0.90	0.38
HF 325	2	2.03	1.73	1.61	1.35	0.85	0.36
	3		1.42	1.32	1.22	0.80	0.35

Filter element	t		Abs	olute filtra N Series	tion	
Туре		A03	A06	A10	A16	A25
	1	332.71	250.07	184.32	152.36	128.36
HP 011	2	220.28	165.56	74.08	59.13	37.05
	3	123.24	92.68	41.48	33.08	20.72
	4	77.76	58.52	28.37	22.67	16.17
	2	70.66	53.20	25.77	20.57	14.67
HP 039	3	36.57	32.28	18.00	13.38	8.00
	4	26.57	23.27	12.46	8.80	5.58
	1	31.75	30.30	13.16	12.3	7.29
	2	24.25	21.26	11.70	9.09	4.90
HP 050 HPX 050	3	17.37	16.25	8.90	7.18	3.63
	4	12.12	10.75	6.10	5.75	3.08
	5	7.00	6.56	3.60	3.10	2.25
	1	20.33	18.80	9.71	8.66	4.78
HP 135	2	11.14	10.16	6.60	6.38	2.22
	3	6.48	6.33	3.38	3.16	2.14


Filter element	t			olute filtra H - U Series		
Туре		A03	A06	A10	A16	A25
HP 011	1	424.58	319.74	235.17	194.44	163.78
	2	281.06	211.25	94.53	75.45	47.26
	3	130.14	97.50	43.63	34.82	21.81
	4	109.39	82.25	36.79	29.37	18.40
HP 039	2	73.00	57.00	28.00	24.00	17.20
	3	40.90	36.33	21.88	18.80	11.20
	4	31.50	28.22	17.22	9.30	6.70
HP 050 HPX 050	1 2 3 4 5	47.33 29.10 20.85 14.55 9.86	34.25 25.95 19.50 12.90 9.34	21.50 14.04 10.68 7.32 6.40	20.50 10.90 8.61 6.90 4.80	14.71 5.88 4.36 3.69 2.50
HP 135	1	29.16	25.33	13.00	12.47	5.92
	2	14.28	11.04	7.86	7.60	4.44
	3	8.96	7.46	4.89	4.16	3.07

Suction filters

Filter element	Nominal filtration N Series										
Туре	P10	P25	M25	M60	M90	M250					
SF 250	0.65	0.20	0.10	0.08	0.05	0.03					
SF 503	-	-	0.17	0.11	0.11	0.11					
SF 504	-	-	0.11	0.08	0.08	0.08					
SF 505	-	-	0.23	0.18	0.18	0.18					
SF 510	-	-	0.18	0.14	0.14	0.14					
SF 535	-	-	0.08	0.05	0.05	0.05					
SF 540	_	_	0.05	0.04	0.04	0.04					

TYPICAL FILTER SIZING Selection Software

Stainless steel high pressure filters are used as process filters to protect individual valves or the entire hydraulic circuit from contamination as per ISO 4406. 6 versions are available with operating pressures ranging from 320 bar up to 1000 bar.

A range of products is available to resolve all filter mounting problems, in the following configurations:

- FZP In-line pressure filter with threaded mount
- FZH In-line pressure filter with threaded mount for higher pressure
- FZX In-line pressure filter with threaded mount up to 1000 bar
- FZB Manifold side mounting
- FZM Manifold top mounting
- FZD Duplex pressure filter for continuous operation requirements

FZ stainless steel filters are specifically designed

- for applications in the:
- Process engineering
- Water hydraulics
- Offshore technology
- Marine technology
- High pressure hydraulics
- Any application in harsh or aggressive environment

For the proper corrective factor Y see chapter at page 25

Stainless steel high pressure filters

FZP	page	577
FZH		587
FZX		597
FZM		605
FZB		613
FZD		621
INDICATORS		688

Maximum working pressure up to 42 Mpa (420 bar) - Flow rate up to 160 l/min

FZP general information

Description

Technical data

01-1-1				
Stainless	s steel	nign	pressu	re tilters

In-line

Maximum working pressure up to 42 Mpa (420 bar) Flow rate up to 160 l/min

FZP is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1 1/4" female threaded connections, for a maximum flow rate of 160 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZP filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

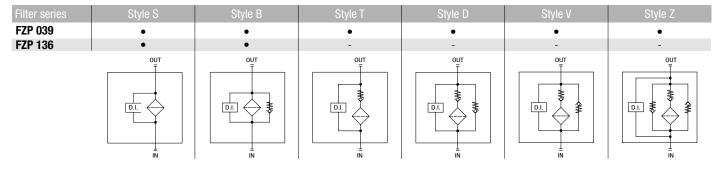
Weights [kg] and volumes [dm³]

Filter series			Weights [kg]					Volumes [dm ³]					
	Length						Length						
FZP 039		-	4.5	5.1	5.6			-	0.19	0.26	0.34		
FZP 136		8.3	10.2	11.5	-			0.45	0.78	1.00	-		

GENERAL INFORMATION FZP

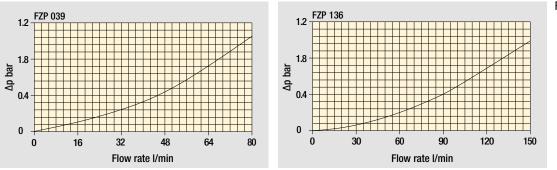
FILTER ASSEMBLY SIZING

Flow rates [l/min]


			Filter elem	ent design	- R Series			Filter eleme	ent design -	S-U Series	
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	19	25	43	50	59	19	23	41	45	55
FZP 039	3	34	37	53	62	74	31	34	48	52	66
	4	42	46	63	72	81	38	41	55	71	78
	1	63	67	102	108	136	47	53	87	89	127
FZP 136	2	95	100	122	123	159	81	95	113	115	138
	3	122	124	148	150	160	106	116	135	141	151

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

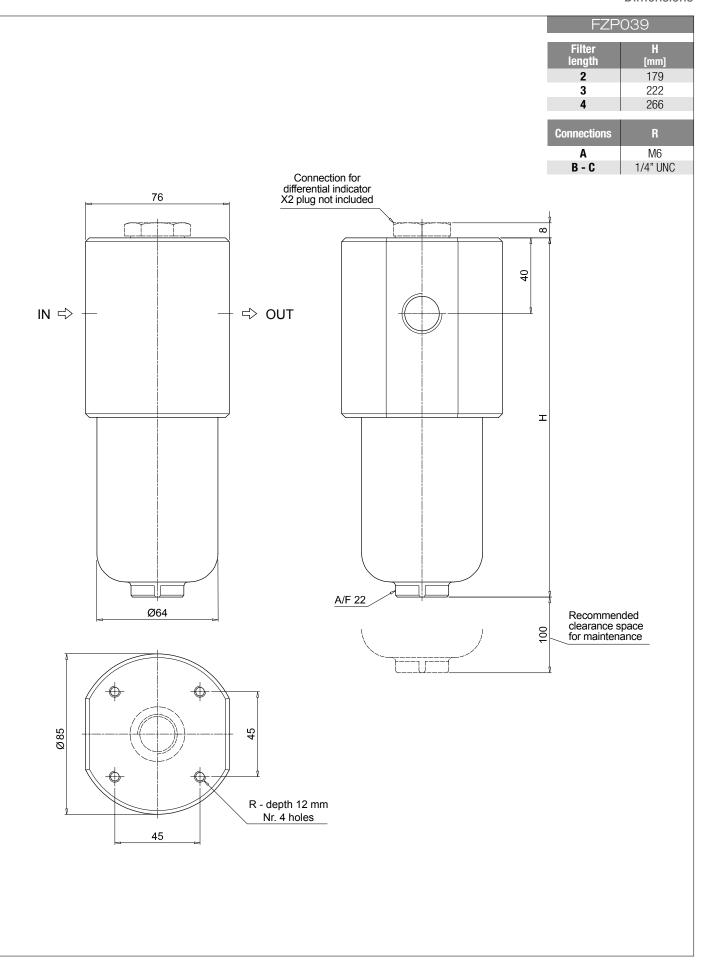
FZP fzpo39

	C	OMPLETE	FILTER										
Series and size	Configu	uration example:	FZP039	2] [E	3	F		3	2	A03	U	P01
FZP039													
Length													
2 3 4													
Valves													
S Without bypass													
B With bypass 6 bar													
D With bypass o bai T With check valve, without bypass	-												
D With check valve, with bypass 6 bar													
V With reverse flow, without bypass													
Z With reverse flow, with bypass 6 bar													
Seals													
A NBR													
V FPM													
F MFQ													
Connections													
A G 1/2"													
B 1/2" NPT	-												
C SAE 8 - 3/4" - 16 UNF	-												
Connections for differential indicators													
1 Without connection													
2 With connection	-												
	-												
Filtration rating (filter media)													
A03 Inorganic microfiber 3 μm													
A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm							Vak						
A16 Inorganic microfiber 16 µm	Element	Δn		_	S	B	Valve	#5 D	V	B	kecution		
A25 Inorganic microfiber 25 μm		20 bar			-	•	-	•	- •	P		Filtri sta	andard
		10 bar			•	-	•	-	• -	P		tomized	
	U 21	0 bar, stainles	s steel filter el	ement	t •	•	•	•	• •	,			

FILTER ELEMENT

Element series and size		Cor	nfiguration example:	HP039	2 A	.03	FU	P01
HP039		-						
Element length								
		-						
Filtration rating (filter media)								
A03 Inorganic microfiber 3 µm		_						
A06 Inorganic microfiber 6 µm								
A10 Inorganic microfiber 10 µm		-						
A16 Inorganic microfiber 16 µm		-						
A25 Inorganic microfiber 25 µm		-						
		-						
							_	
	Seals	Element ∆p	e la	Valves	V Z	Exec	ution	
		R 20 bar			V Z	P01	MP Filtri stan	dard
	A NBR V FPM	S 210 bar		•	•	Pxx	Customized	uaru
			• -			F AA	GUSIOIIIZEU	

	See page 688		
DEX	Electrical differential indicator	DVY Visual differential indicator	
DLX	Electrical / visual differential indicator		
DVX	Visual differential indicator		
		PLUGS	See page 706
X2	Differential indicator plug (not included)		


210 bar, stainless steel filter element • • •

• •

F MFQ U

IN-LINE

FZP039 FZP

Designation & Ordering code

-ZP FZP136

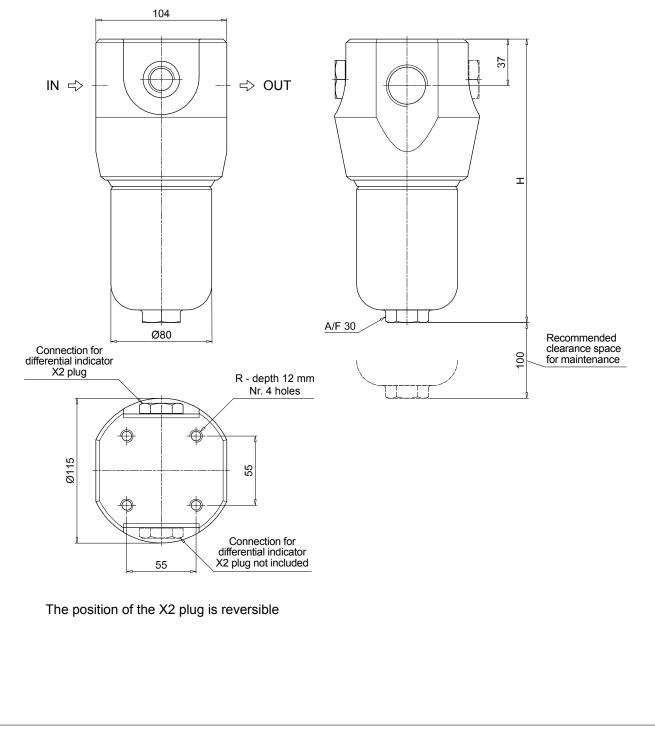
	COMPLETE FILTER
Series and size	Configuration example: FZP136 1 B A B 6 A03 R P0
FZP136	
Length	
1 2 3	_
Bypass valve	
S Without bypass	
B With bypass 6 bar	
Seals	
A NBR	
V FPM	—
F MFQ	—
Connections	
A G 3/4"	
B 3/4" NPT	
C SAE 12 - 1 1/16" - 12 UN	
D G 1"	
E 1" NPT	
F SAE 16 - 1 5/16" - 12 UN	
G G 1 1/4"	
H 1 1/4" NPT	
I SAE 20 - 1 5/8" - 12 UN	
Connections for differential indicators	
1 Without connection	
6 With two connections on both sides	
Filtration rating (filter media)	
A03 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm	
V	
A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm	Valves
A10 Inorganic microfiber 16 μm A25 Inorganic microfiber 25 μm	Element Δp S B Execution
norganic microniser 25 µm	— <u>R 20 bar</u> <u>- •</u> <u>P01</u> MP Filtri standard
	S 210 bar • - Pxx Customized
	U 210 bar, stainless steel filter element • •

U 210 bar, stainless steel filter element • •

		FIL	fer e	LEMENT									
Element series and size				Configura	ation example:	HP135	1	Α	.03	Α] F	P01	
Element length 1 2 3													
Filtration rating (filter media)													
A03 Inorganic microfiber 3 µm													
A06 Inorganic microfiber 6 µm													
A10 Inorganic microfiber 10 µm													
A16 Inorganic microfiber 16 µm													
A25 Inorganic microfiber 25 µm							Val	ves					
,	Seals	S	Elen	nent ∆p			S	B	Exec	cution			
	Α	NBR	R	20 bar			-	•	P01	MP	Filtri	standard	
	V	FPM	S	210 bar			٠	-	Рхх	Cus	stomiz	zed	
	F	MFQ	U	210 bar, stain	less steel fil	ter element	•	•					

 CLOGGING INDICATORS
 See page 688

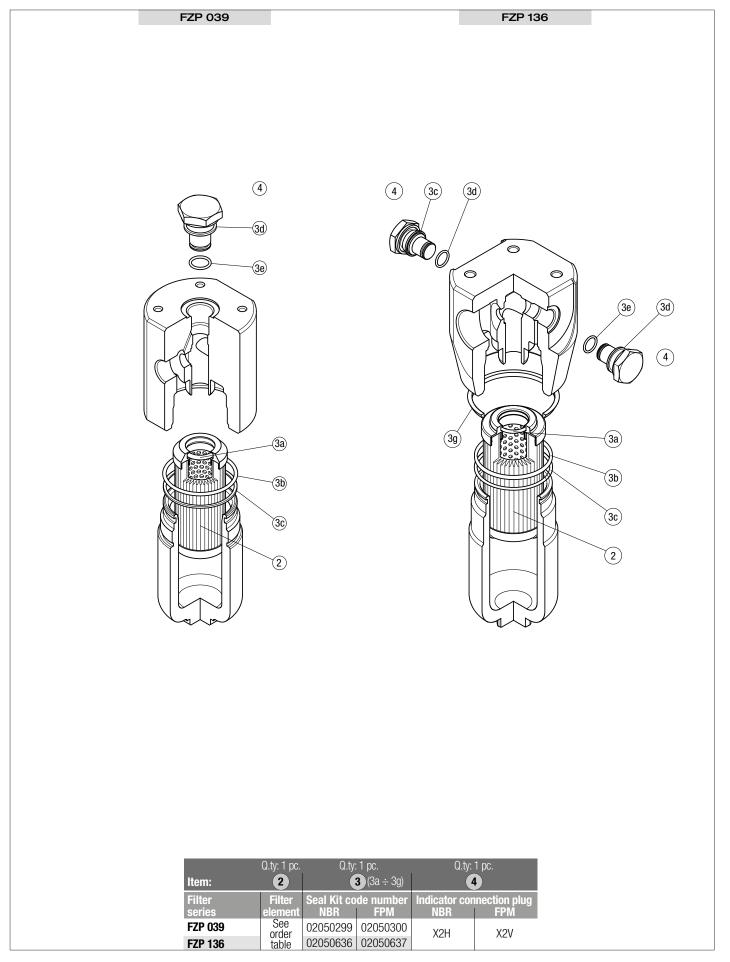
 DEX
 Electrical differential indicator
 DVY
 Visual differential indicator


 DVX
 Visual differential indicator
 PLUGS
 See page 706

 X2
 Differential indicator plug (not included)
 See page 706

IN-LINE

FZP136 FZP


FZP136									
Filter length	H [mm]								
1	222								
2	335								
3	410								
Connections	R								
Α	M10								
B - C	3/8" UNC								
D	M10								
	IVITU								
E - F	3/8" UNC								
_									

FZP SPARE PARTS

Order number for spare parts

FZF

Maximum working pressure up to 70 Mpa (700 bar) - Flow rate up to 80 l/min

=ZH GENERAL INFORMATION

Description

Technical data

Stainless steel high pressure filters In-line Maximum working pressure up to 80 Mpa (700 bar) Flow rate up to 80 l/min	Filter housing materials - Head: AISI 316L - Housing: AISI 316L - Bypass valve: AISI 316L	Δp element type Fluid flow through the filter element from OUT to IN Microfibre filter elements - series N-R: 20 bar. Element series "N - R": - End cap: Polyamide
 FZH is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions. They are directly connected to the lines of the system through the hydraulic fittings. Available features: 1/2" female threaded connections, for a maximum flow rate of 80 l/min Fine filtration rating, to get a good cleanliness level into the system Bypass valve, to relieve excessive pressure drop across the filter media Low collapse filter element "N", for use with filters provided with bypass valve High collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve High collapse filter element "U", for use with aggressive fluids Visual, electrical and electronic differential clogging indicators Common applications: Off-shore equipment Water filtration systems Systems with strong or corrosive environmental conditions Systems with corrosive fluids 	Seals - Standard NBR series A (-25 °C to +110 °C) - Optional FPM series V (-20 °C to +120 °C) - Optional MFQ series F (-50 °C to +120 °C) Bypass valve Opening pressure 6 bar ±10% Temperature From -50 °C to +120 °C Note FZH filters are provided for vertical mounting	 Cine tube: Tinned steel External/Internal support: Wire mesh Epox painted Media/Support/Pre-filter: Microfibre/Syntetic Microfibre filter elements - series H-S: 210 bar. Element series "H - S": End cap: Tinned steel Core tube: Tinned steel External support: Wire mesh Epox painted Internal support: Wire mesh Stainless steel Media/Support/Pre-filter: Microfibre/Syntetic Stainless Steel Microfibre filter elements series U: 210 bar. Element series "U": End cap: Stainless steel Core tube: Stainless steel Core tube: Stainless steel Core tube: Stainless steel External support: Stainless steel Internal support: Stainless steel Internal support: Stainless steel Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series		Weights [kg]			Volumes [dm ³]						
	Length						Length				
FZH 012		2.1	2.2	2.7	3.3			0.10	0.12	0.15	0.20
FZH 040		-	4.5	5.1	5.6			-	0.19	0.26	0.34

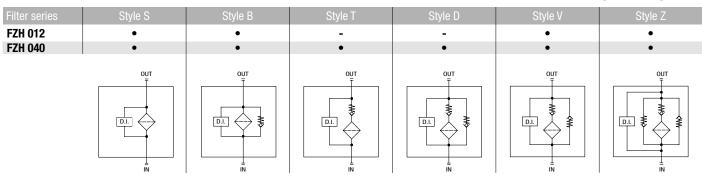
GENERAL INFORMATION \vdash

FILTER ASSEMBLY SIZING

Flow rates [l/min]

			Filter element design - R Series				Filter element design - S-U Series						
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25		
	1	4	6	8	9	11	3	5	6	7	9		
FZH 012	2	7	9	17	20	26	5	7	14	17	23		
F2H 012	3	11	14	25	27	32	11	14	24	27	32		
	4	17	20	29	31	34	13	16	26	29	33		
	2	19	25	43	50	59	19	23	41	45	55		
FZH 040	3	34	37	53	62	74	31	34	48	52	66		
	4	42	46	63	72	81	38	41	55	71	78		

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.


The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop

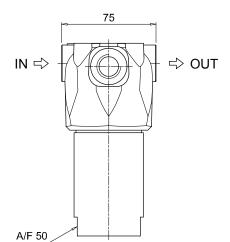
Filter housings ∆p pressure drop FZH 012 FZH 040 2.1 1.2 -7H 010 1.4 1.8 Δp bar Δp bar 0.7 0.4 F7H 01 0 0 0 20 30 40 50 0 16 32 48 64 80 10 Flow rate I/min Flow rate I/min

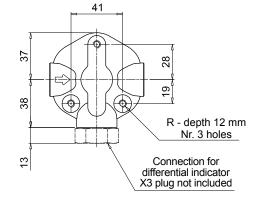
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

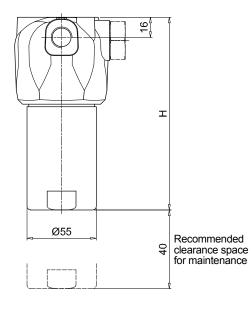
Designation & Ordering code

FZH FZH012

	COMPLETE	FILTER								
Filter Series and size	Configuration example:	FZH012	2	B	F	В	2	A03	U	P01
FZH012										
Filter length										
1 2 3 4										
Valves										
S Without bypass										
B With bypass 6 bar										
V With reverse flow, without bypass										
Z With reverse flow, with bypass 6 bar										
Seals										
A NBR										
V FPM										
F MFQ										
Connections										
A G 1/4"										
B 1/4" NPT										
C SAE 5 - 1/2" - 20 UNF										
D G 3/8" E 3/8" NPT										
F SAE 6 - 9/16" - 18 UNF										
Connection for differential indicator										
1 Without connection										
2 With connection										
Filtration rating (filter media)					Valves					
A03 Inorganic microfiber 3 μm	Element Ap			S	B	, I Z	Exe	cution		
A06 Inorganic microfiber 6 µm	N 20 bar			-	• •	•	P01		tri stano	lard
A10 Inorganic microfiber 10 µm	H 210 bar			٠	- •	• -	Рхх	Custor	nized	
A16 Inorganic microfiber 16 µm	U 210 bar, sta	inless steel fi	lter eleme	ent •	• •	•				
A25 Inorganic microfiber 25 µm										

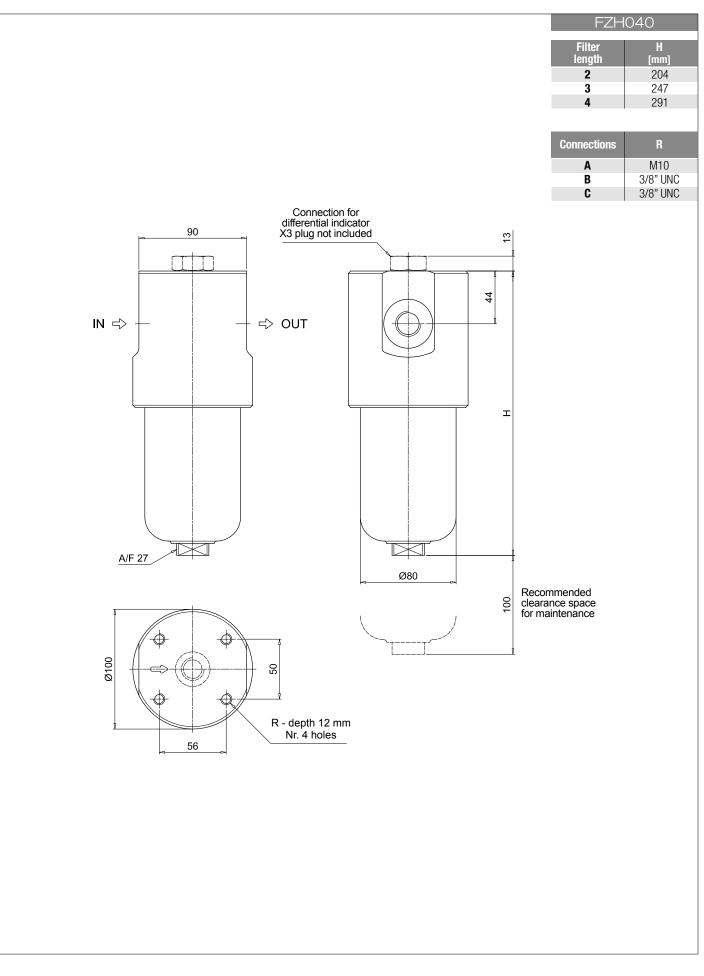

				FILTER E	LEMENT							
	ent series and size				Configuration example	HP0	11	2	A03	F	U P(01
HP01	1											
Flow	out lowelle		_									
Elem	ent length											
Filtra	tion rating (filter media)											
A03	Inorganic microfiber	3 µm										
A06	Inorganic microfiber	6 µm										
A10	Inorganic microfiber	10 µm										
A16	Inorganic microfiber	16 µm										
A25	Inorganic microfiber	25 µm										
							Valves					
Seal	\$		Ele	ment ∆p		S	B V	Ζ	Exec			
Α	NBR		N	20 bar		-	• -	•	P01	MP Fil	tri standar	d
V	FPM		Н	210 bar		٠	- •	-	Рхх	Custo	nized	
F	MFQ		U	210 bar,	stainless steel filter eleme	ent •	• •	•				
			01							Co	0 0 0 0 0 0	0


	CLOGGING INDICATORS					
DEZ	Electrical differential indicator	DVZ Visual differential indicator				
DLZ	Electrical/visual differential indicator					
		PLUGS	See page 706			
Х3	Differential indicator plug (not included)					



FZH012 FZH

FZH012								
Filter length	H [mm]							
1	93							
2	104							
3	154							
4	204							
Connections	R							
Α	M6							
B - C	1/4" UNC							
D	M6							
E-F	1/4" UNC							


FZH FZH040

	COMPLETE FILTER
Filter Series and size FZH040	Configuration example: FZH040 2 T A A 2 A03 S P01
Filter length 2 3 4	
Valves S Without bypass B With bypass 6 bar	
T With check valve, without bypassD With check valve, with bypass 6 bar	
 With reverse flow, without bypass With reverse flow, with bypass 6 bar 	
Seals A NBR F MFQ V FPM	
Connections A G 1/2"	
B 1/2" NPT C SAE 8 - 3/4" - 16 UNF	
Connection for differential indicator1Without connection2With connection	
Filtration rating (filter media) A03 Inorganic microfiber 3 µm	
A05 Inorganic microfiber 3 μm A06 Inorganic microfiber 6 μm A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm	Valves Element Δp S B T D V Z Execution
A25 Inorganic microfiber 25 μm	R20 barS210 barU210 bar, stainless steel filter element

FILTER ELEMENT

	ent series and size		Configuration example: HP039 2 A03 A S PC)1
HP03	9			
Elem	ent length			
2	3 4			
Filtra	tion rating (filter media)			
A03	Inorganic microfiber	3 µm		
A06	Inorganic microfiber	6 µm		
A10	Inorganic microfiber	10 µm		
A16	Inorganic microfiber	16 µm		
A25	Inorganic microfiber	25 µm		
		_		
			Valves	
	Seals		Element Δp S B T D V Z Execution	·
	A NBR	E EPDM	R 20 bar - • - • • PO1 MP Filtri standar	<u>d</u>
	V FPM	F MFQ	S 210 bar • - • - • - Pxx Customized	
			U 210 bar, stainless steel filter element • • • • • •	

			See page 688							
	CLOGGING INDICATORS									
DEZ	Electrical differential indicator	DVZ Visual differential indicator								
DLZ	Electrical/visual differential indicator									
		PLUGS	See page 706							
X3	Differential indicator plug (not included)									

FZH SPARE PARTS

Order number for spare parts

FZH 012		FZH 040
FZH 012		
	Q.ty: 1 pc. Q.ty: 1 pc.	Q.ty: 1 pc.
Item: Filter series	2 3 (3a ÷ 3e) Filter element Seal Kit code number FPM	4 Indicator connection plug NBR FPM
FZH 012 FZH 040	See order table 02050856 02050857 02050860 02050861	

Maximum working pressure up to 100 Mpa (1000 bar) - Flow rate up to 10 l/min

FZX general information

Description

Technical data

In-line

Maximum working pressure up to 100 Mpa (1000 bar) Flow rate up to 10 l/min

FZX is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 1/2" female threaded connections, for a maximum flow rate of 10 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- High collapse filter element "H", for use with filters not provided with bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZX filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from OUT to IN Microfibre filter elements - series H: 210 bar.

Element series "H":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

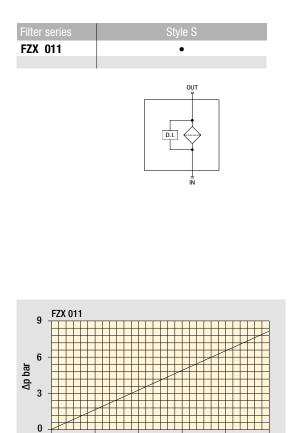
- Element series "U":
- Element series U :
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
 Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]						Volumes [dm ³]						
	Length						Length						
FZX 011		-	-	6.5	-			-	-	0.15	-		

GENERAL INFORMATION FZX

FILTER ASSEMBLY SIZING


Flow rates [l/min]

		Filter element design - H-U Series							
Filter series	Length	A03 A06	A10	A16	A25				
FZX 011	3	1.57 1.63	1.73	1.74	1.77				

Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar. The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

6

Flow rate I/min

2

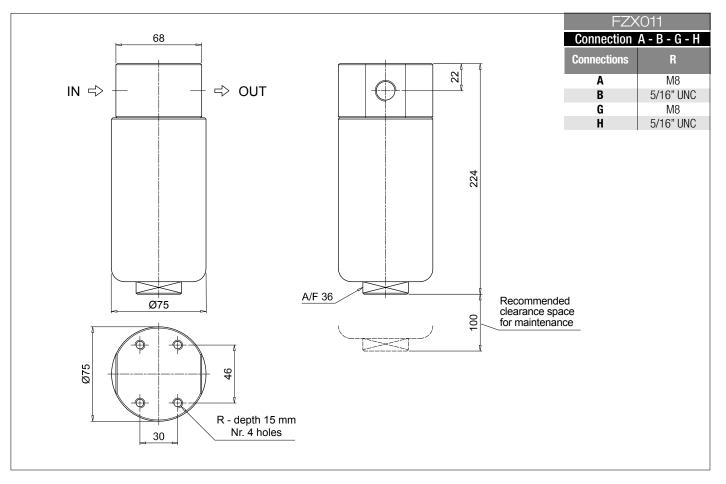
Hydraulic symbols

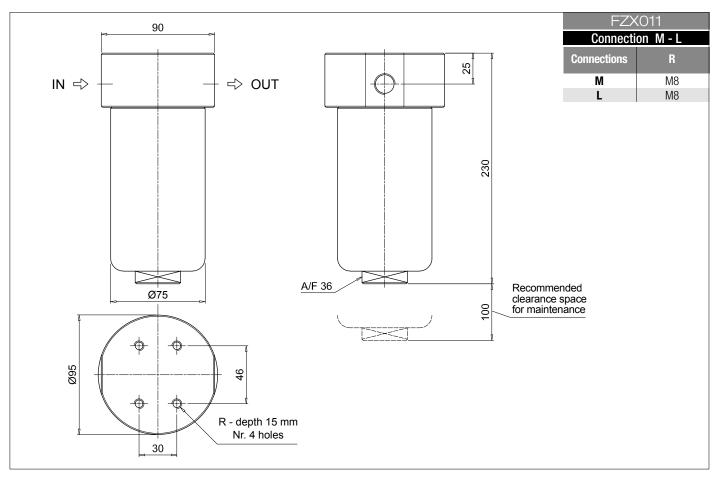
Pressure drop Filter housings ∆p pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

10

8

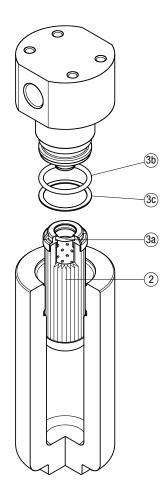



Designation & Ordering code

		COMPLETE	FILTER								
Filter	r series and size	Configuration example:	FZX011	3	S	V	B	1 4	03	U P(01
FZXC											
Filter	r length										
3											
Byna	iss valve										
S	Without bypass										
Seals	s										
A	NBR										
V	FPM										
F	MFQ										
Conr	nections										
	700 bar										
<u>A</u>	G 1/4"										
B G	1/4" NPT G 1/2"										
H	1/2" NPT"										
	Autoclave 1000 bar										
М	9/16" - 18 UNF										
L	3/4" - 14 NPS										
Conr	nection for differential indicators										
1	Without connection										
Filtra	ation rating (filter media)										
A03	Inorganic microfiber 3 µm										
A06	Inorganic microfiber 6 µm										
A10 A16	Inorganic microfiber 10 μm Inorganic microfiber 16 μm										
A10	Inorganic microfiber 25 µm										
	· · · · · · · · · · · · · · · · · · ·										
Elem	210 bar							Exec P01	ution	ri standar	rd
U	210 bar, stainless steel filter element							PUT	Custon		<u>u</u>
								L,YX	ousion	nzeu	

			FILTE	R ELEMENT								
Eleme	ent series and size				Example:	HP011	3	A03	V] []	J PC)1
HP011												1
Eleme	ent length											1
3												1
Filtrat	ion rating (filter media)											1
A03	Inorganic microfiber	3 µm										1
	Inorganic microfiber	6 µm										1
	Inorganic microfiber	10 μm										1
	Inorganic microfiber Inorganic microfiber	16 μm 25 μm										1
	-	25 µm										1
Seals												1
	NBR											
	FPM MED											1
r	MFQ											1
Eleme												1
	210 bar	C 11							cutio			
U	210 bar, stainless steel	tilter element						P01			standar	d
								Рхх	Cu	stomi	zed	

FZX011 FZX



Order number for spare parts

FZX 011

Item:	Q.ty: 1 pc.	Q.ty: 1 pc. 3 (3a ÷ 3c)								
Filter series	Filter element	Seal Kit co NBR	de number FPM							
FZX 011	See order table	02050643	02050644							

Maximum working pressure up to 32 Mpa (320 bar) - Flow rate up to 70 l/min

FZM general information

Description

Technical data

Stainless steel high pressure filters

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 l/min

FZM is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the top of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to $\emptyset15$ mm, for a maximum flow rate of 70 l/min
- ISO 4401 CETOP 3 and CETOP 5 interface, for direct mounting on the CETOP valves.
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions - Systems with corrosive fluids

Filter housing materials - Head: AISI 316L

- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
 Optional FPM
- series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZM filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
 Media/Support/Pre-filter: Microfibre/Syntat
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

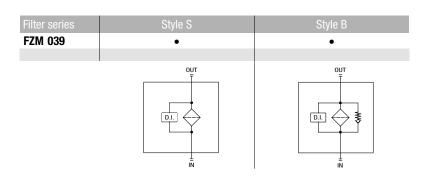
Filter series	Weights [kg]					Volumes [dm ³]						
	Length						Length					
FZM 039		-	5.0	5.6	6.1			-	0.19	0.26	0.34	

GENERAL INFORMATION FZM

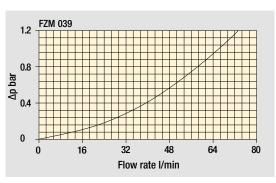
FILTER ASSEMBLY SIZING

F	low	rates	[/	mi	n]
---	-----	-------	---	---	----	----

		Filter element design - R Series Filter element design - S-U Series									
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	19	25	41	47	54	19	23	39	43	51
FZM 039	3	33	36	50	56	65	30	33	45	49	60
	4	41	44	58	64	70	37	39	51	63	68


Maximum flow rate for a complete stainless steel high pressure filter with a return drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

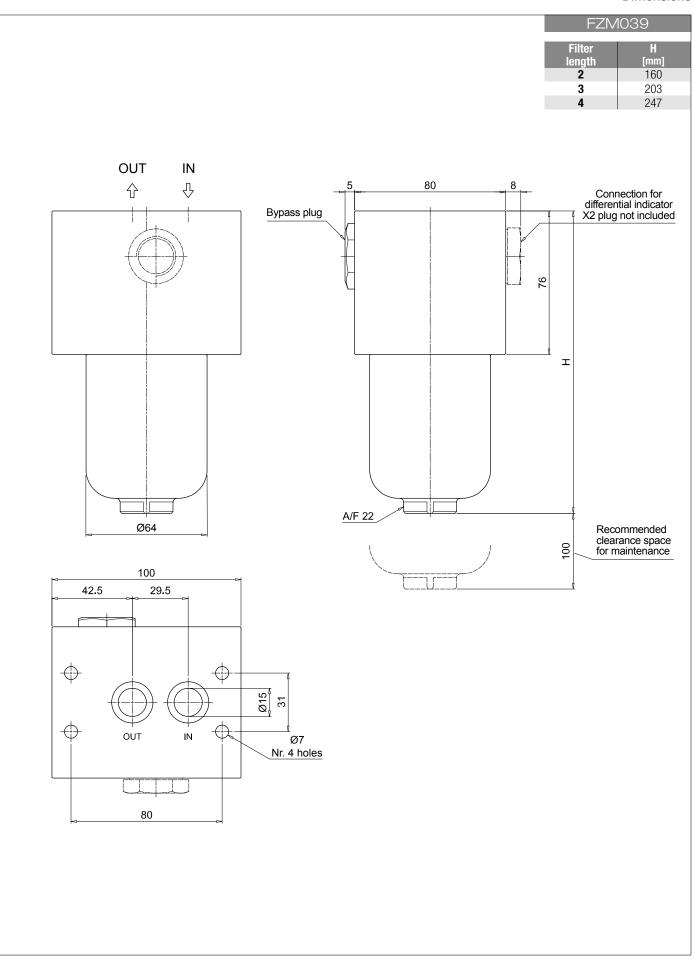

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

Pressure drop Filter housings ∆p pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.


FZM FZM039

Designation & Ordering code

		CON	PLETE FILTER										
Series	and size	Configuratio	n example: FZM03	39	2	S	Α	N	1	1	A10	H	P01
FZM03			•					,					
Length													
2	3 4												
Bypas													
	Without bypass												
	With bypass 6 bar												
Seals													
A	VBR												
V	FPM												
F	MFQ												
Conne													
M	Manifold												
Conno	ction for differential indicator												
	Without connection												
	With connection												
2													
Filtrati	on rating (filter media)												
	norganic microfiber 3 µm												
	norganic microfiber 6 µm												
A10	norganic microfiber 10 µm												
A16	norganic microfiber 16 µm												
A25	norganic microfiber 25 µm							Valv	/es	-			
			nent ∆p					S	B		xecution		
		R S	20 bar 210 bar					-	•	P(P)		Filtri sta comizec	
								•					

	FILTER ELEME	NT	
Element series and size		Configuration example: HP039 3 A	A10 A S P01
HP039			
Element length			
2 3 4			
Filtration rating (filter media)			
A03 Inorganic microfiber 3 µm			
A06 Inorganic microfiber 6 µm			
A10 Inorganic microfiber 10 µm			
A16 Inorganic microfiber 16 µm			
A25 Inorganic microfiber 25 µm			
	Seals	Element Δp	Execution
	A NBR I	R 20 bar	P01 MP Filtri standard
	V FPM	S 210 bar	Pxx Customized
	F MFQ	J 210 bar, stainless steel filter element	

	CLOGGING INDICATORS						
DEX	Electrical differential indicator						
DLX	Electrical/visual differential indicator						
		PLUGS	See page 706				
X2	Differential indicator plug (not included)	PLUGS	See page 706				

FZM spare parts

Order number for spare parts

FZM 039 (3n) (3h) 6 $(\subseteq$ 6 \bigcirc (3e) (3d) 4 -(3a) (3b) (3c) 2 Q.ty: 1 pc. Q.ty: 1 pc. Q.ty: 1 pc. **3** (3a ÷ 3n) Item: 2 4 Filter Seal Kit code number NBR FPM Indicator connection plug NBR FPM Filter See order table series FZM 039 02050651 02050652 X2H X2V

Maximum working pressure up to 32 Mpa (320 bar) - Flow rate up to 70 l/min

FZB GENERAL INFORMATION

Description

Technical data

Stainless steel high pressure filters

Manifold

Maximum working pressure up to 32 Mpa (320 bar) Flow rate up to 70 l/min

FZB is a range of stainless steel high pressure filter for protection of sensitive components in high pressure hydraulic systems placed in difficult environmental conditions.

They are directly connected to the side of the manifold, through the proper flanged interface.

Available features:

- Manifold connections up to Ø16 mm, for a maximum flow rate of 70 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-shore equipment
- Water filtration systems
- Systems with strong or corrosive environmental conditions
- Systems with corrosive fluids

Filter housing materials

- Head: AISI 316L
- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
- Optional FPM series V (-20 °C to +120 °C)
- Optional MFQ
- series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZB filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series S: 210 bar. Element series "S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

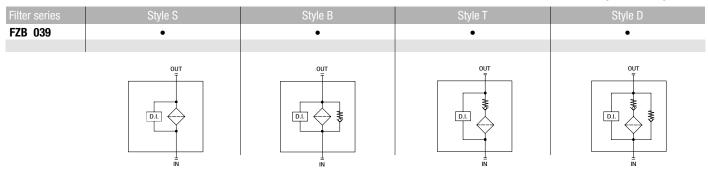
Filter series		Weights	s [kg]			Volumes [dm ³]					
	Length					Length					
FZB 039		-	4.6	5.2	5.7		-	0.19	0.26	0.34	

GENERAL INFORMATION FZE

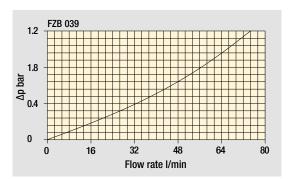
FILTER ASSEMBLY SIZING

Flow rates [I/min]

		Filter element design - R Series				Filter element design - S Series				Filter element design - U Series						
Filter series	Length	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	18	23	39	44	52	18	22	37	40	48	18	22	37	40	48
FZB 039	3	31	33	47	54	65	28	31	43	46	84	28	31	43	46	84
	4	38	41	56	63	71	34	36	48	62	68	34	36	48	62	68


Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

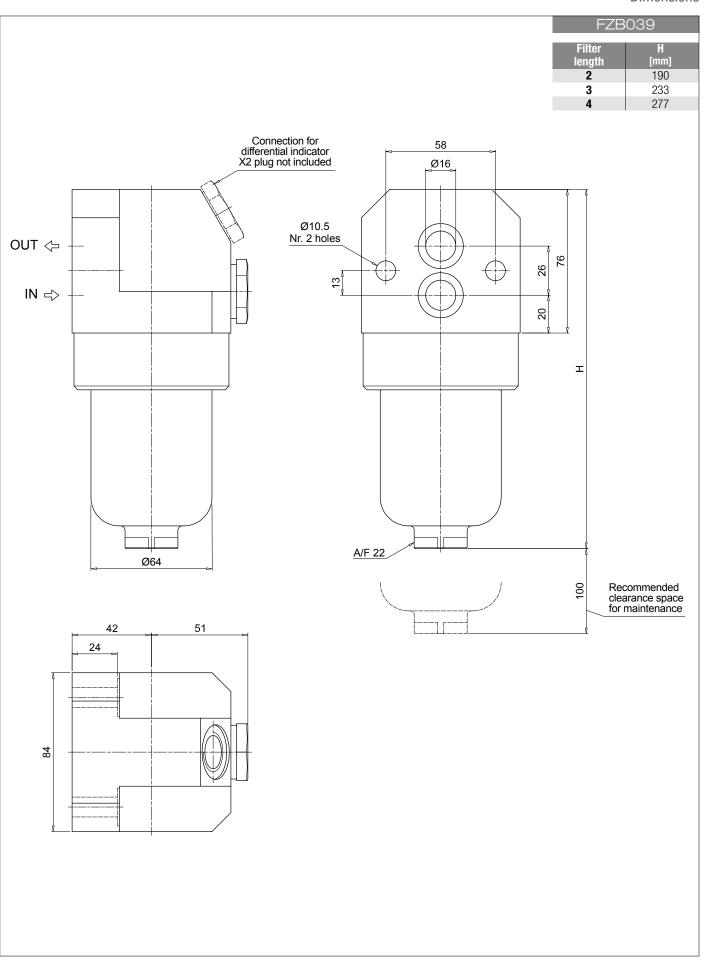
Hydraulic symbols

Pressure drop Filter housings ∆p pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

FZB FZB039

Designation & Ordering code


	COMPLETE FIL	TER			
Series and size	Configuration example: F	ZB039 2	ΓΑ	F 2	A06 S P01
FZB039	ipioi				
Length					
2 3 4					
Valves					
S Without bypass					
B With bypass 6 bar					
T With check valve, without bypass					
D With check valve, with bypass 6 bar					
Seals					
A NBR					
V FPM					
F MFQ					
<u> </u>					
Connections					
F Manifold					
Connections for differential indicator					
1 Without connection 2 With connection on the top					
Filtration rating (filter media)					
A03 Inorganic microfiber 3 µm					
A06 Inorganic microfiber 6 µm					
A10 Inorganic microfiber 10 µm					
A16 Inorganic microfiber 16 µm			Velves		
A25 Inorganic microfiber 25 µm	Element ∆p		Valves		xecution
	R 20 bar		- • -		01 MP Filtri standard
	S 210 bar		• - •	- P	xx Customized
	U 210 bar, stainless	steel filter element	• • •	•	

	FILTER ELEN	IENT	
Element series and size HPO39		Configuration example: HP039 2	A06 A S P01
Element length 2 3 4			
Filtration rating (filter media) A03 Inorganic microfiber 3 µm			
A06 Inorganic microfiber 6 µm			
A10 Inorganic microfiber 10 μm A16 Inorganic microfiber 16 μm			
A25 Inorganic microfiber 25 µm			
	Seals	Element Δp	Execution
	A NBR	R 20 bar	P01 MP Filtri standard
	V FPM	S 210 bar	Pxx Customized
	F MFQ	U 210 bar, stainless steel filter element	

CLOGGING INDICATORS							
DEX	X Electrical differential indicator DVX Visual differential indicator						
DLX	Electrical/visual differential indicator						
		PLUGS	See page 706				
X2	Differential indicator plug (not included)						

FZB039 HZE

FZB SPARE PARTS

Order number for spare parts

Q.ty: 1 pc.	2.ty: 1.pc.	30 (3) (3) (3) (3) (3) (3) (3) (3)	(4)	The second se	
Item: 2 Filter Filter	3 (3a ÷ 3n)		4	5	5
series element See FZB 039 FZB 039	Seal Kit code number NBR0205064702050648	NBR X2H	nnection plug FPM X2V	Bypass asse NBR 02001286	FPM 02001295

Maximum working pressure up to 35 Mpa (350 bar) - Flow rate up to 60 l/min

FZD GENERAL INFORMATION

Description

Stainless steel high pressure filters

Duplex

Maximum working pressure up to 35 Mpa (350 bar) Flow rate up to 60 l/min

FZD is a range of stainless steel high pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 3/4", for a maximum flow rate of 60 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Balancing valve, available for FZD051, to equalize the housing pressure before the switch.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- High collapse filter element "H", for use with filters not provided with bypass valve
- Low collapse filter element with external support "R", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters provided with the bypass valve
- High collapse filter element with external support "S", for filter element protection against the back pressure caused by the check valve or the reverse flow in filters not provided with the bypass valve
- High collapse filter element "U", for use with aggressive fluids
- Visual, electrical and electronic differential clogging indicators

Common applications:

- System where shut-down causes high costs
- System where shut-down causes safety issues

Filter housing materials

- Head: AISI 316L

Technical data

- Housing: AISI 316L
- Bypass valve: AISI 316L

Seals

- Standard NBR series A (-25 °C to +110 °C)
 Optional FPM
- series V (-20 °C to +120 °C)
- Optional MFQ series F (-50 °C to +120 °C)

Bypass valve Opening pressure 6 bar ±10%

Temperature From -50 °C to +120 °C

Note FZD filters are provided for vertical mounting

∆p element type

Fluid flow through the filter element from $\ensuremath{\mathsf{OUT}}$ to $\ensuremath{\mathsf{IN}}$

Microfibre filter elements - series R: 20 bar. Element series "R":

- End cap: Polyamide
- Core tube: Tinned steel
- Core tube: Tinned steel
- External/Internal support: Wire mesh Epox painted
- Media/Support/Pre-filter: Microfibre/Syntetic

Microfibre filter elements - series H-S: 210 bar. Element series "H - S":

- End cap: Tinned steel
- Core tube: Tinned steel
- External support: Wire mesh Epox painted
- Internal support: Wire mesh Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Stainless Steel Microfibre filter elements series U: 210 bar.

- Element series "U":
- End cap: Stainless steel
- Core tube: Stainless steel
- External support: Stainless steel
- Internal support: Stainless steel
- Media/Support/Pre-filter: Microfibre/Syntetic

Weights [kg] and volumes [dm³]

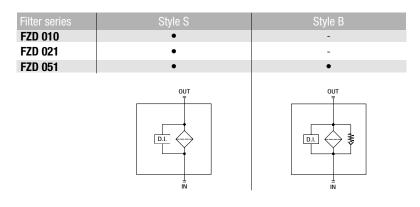
Filter series			Weigh	Weights [kg]			Volumes [dm ³]					
	Length						Length					4
FZD 010		-	7.9	-	-	-		-	0.10	-	-	-
FZD 021		-	9.6	9.8	10.3	-		-	0.06	0.12	0.22	-
FZD 051		-	17.4	18.0	19.0	20.3		-	0.31	0.41	0.53	0.83

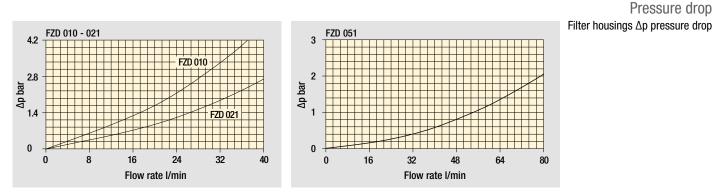
general information FZD

FILTER ASSEMBLY SIZING

Flow rates [l/min]

			Filter	element de	esign - H	l Series				Filter e	element o	design ·	- U Serie	es	
Filter series	Length	A03	AO	6 A [.]	10	A16	A25		A03	A06		A10	A16		A25
FZD 010	2	4	5	7	7	8	11		4	5		7	8		11
		_													
	2	5	6	1	1	12	16		5	6		11	12		16
FZD 021	3	9	11	1	6	18	20		9	11		16	18		20
	4	10	12	2 1	7	19	21		10	12		17	19		21
		Filter	element d	esign - R	Series	Filt	er elemer	nt desig	jn - SS	eries	Filter	[.] elemer	nt design	- U S	Series
Filter series	Length	A03	A06 A	10 A16	A25	A03	A06	A10	A16	A25	A03	A06	A10	A16	A25
	2	39	41	51 54	59	35	37	48	51	58	35	37	48	51	58
FZD 051	3	45	46	54 56	61	41	43	52	54	60	41	43	52	54	60
	4	50	52	58 58	62	47	49	56	56	61	47	49	56	56	61
	5	56	57	62 62	63	53	53	57	59	63	53	53	57	59	63


Maximum flow rate for a complete stainless steel high pressure filter with a pressure drop $\Delta p = 1.5$ bar.


The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

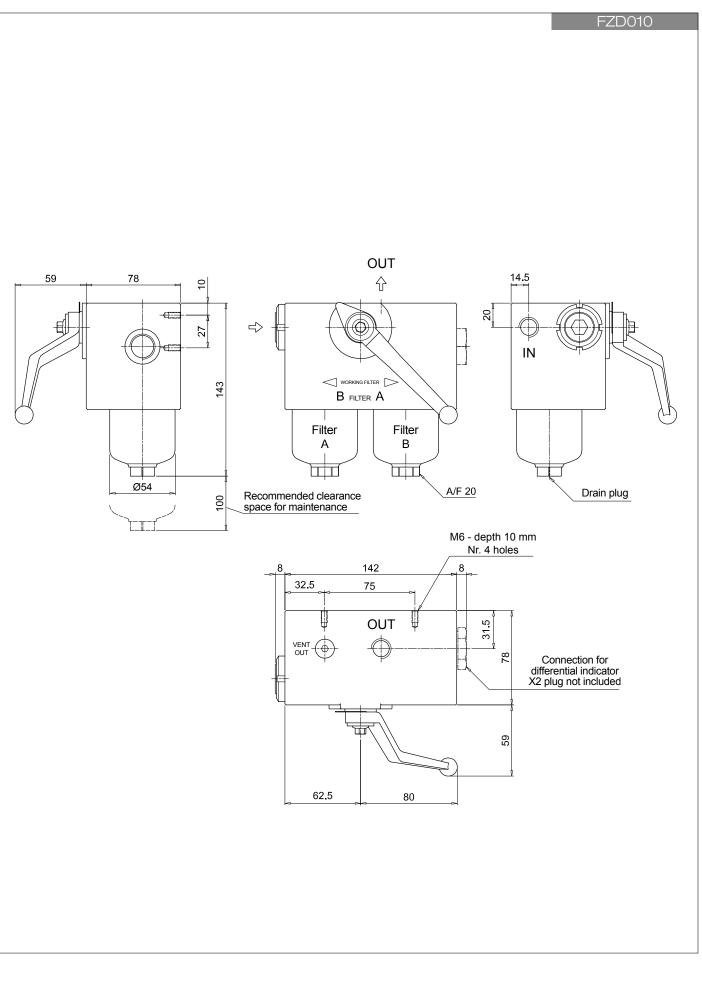
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

Hydraulic symbols

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. ∆p varies proportionally with density.

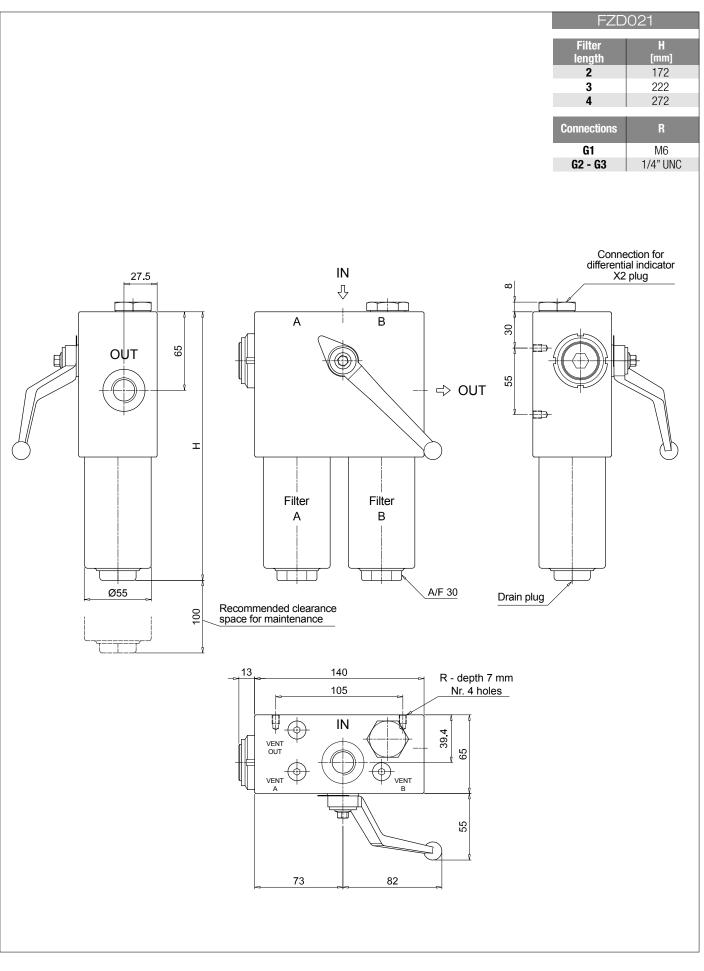
FZD fzd010 - fzd021


Designation & Ordering code

			COMPLETE F	ILTER									
Ser <u>ie</u>	es and size		Configuration	example: FZD021	4	S		Α	G1	A	06	Н	P01
FZDO	10 FZD021			L							\square		
Long	th	FZD010 FZD021											
Leng 2	ui												
3		- •											
4		- •											
	ass valve												
S	Without bypass												
Seals A	s NBR												
	FPM												
V	FPIVI												
Conn	ections FZD010	FZD021											
G1	G 3/8"	G 1/2"											
G2	3/8" NPT	1/2" NPT											
G3	-	SAE 8 - 3/4" - 16 UNF											
	tion rating (filter media)												
A03	Inorganic microfiber	3 µm											
A06	Inorganic microfiber	6 µm											
A10	Inorganic microfiber	10 µm											
A16	Inorganic microfiber	16 µm											
A25	Inorganic microfiber	25 µm		Element ∆p						Execu			
				H 210 bar			-			-			andard
				U 210 bar, sta	ainless s	steel fil	lter e	lemer	nt P	XX	Custo	mizec	

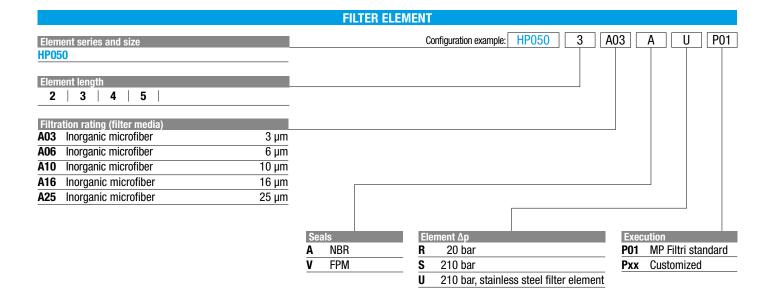
DUPLEX

	FILTER ELEMENT	
Element series and size	Configuration example: HP011 4 A	06 A H P01
FZD010 FZD021		
HP010 • -		
HP011 •		
Element length HP010 HP011		
<u>2</u> • •		
3•		
4		
Filtration rating (filter media)		
A03 Inorganic microfiber 3 µm		
A06 Inorganic microfiber 6 µm		
A10 Inorganic microfiber 10 μm		
A16 Inorganic microfiber 16 µm		
A25 Inorganic microfiber 25 μm		
	Seals Element Δp A NBR H 210 bar	Execution P01 MP Filtri standard
	V FPM U 210 bar, stainless steel filter element	Pxx Customized


	CLOGGING INDICATORS							
DEX	Electrical differential indicator		DVX	Visual differential indicator				
DLX	Electrical/visual differential indicator		DVY	Visual differential indicator				
		PLUGS			See page 706			
X2	Differential indicator plug (not included)							

() MPALTRI

FZD fzd010 - fzd021



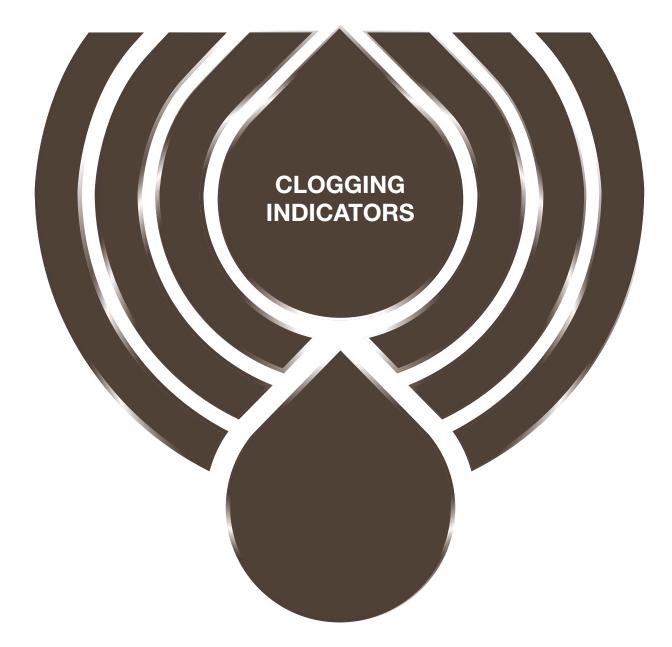
EXAMPLE FZD051

		COM	PLETE FILTER										
Serie	es and size	Co	nfiguration example:	FZD051	3		B	Α	G3	A	03	U	P01
FZDO		_										\square	
_													
Leng													
_2	3 4 5	_											
Byn	ass valve												
S	Without bypass						1						
B	With bypass 6 bar	-											
		_											
Seals	3												
Α	NBR	_											
V	FPM	_											
Conn	ections												
G1	G 3/4"												
G2	3/4" NPT	_											
G3	G 1/2"	_											
G4	1/2" NPT	_											
G5	SAE 8 - 3/4" - 16 UNF												
G6	SAE 12 - 1 1/16" - 12 UN	_											
	1° 1° (#11 1° X												
A03	tion rating (filter media) Inorganic microfiber 3 μπ	2]		
A05	Inorganic microfiber 6 µm												
A00	Inorganic microfiber 10 µm	_											
A10	Inorganic microfiber 16 µm							Valves					
A25	Inorganic microfiber 25 µm		ment ∆p	1				S B		Execu			
		- <u>K</u>	20 bar					- •		-		ri stand	ard
		S	210 bar					• -		XX	Custon	nized	
		U	210 bar, stainl	ess steel fil	ter ele	ment		• •					

DUPLEX

	CLOGGING INDICATORS							
DEX	Electrical differential indicator	DVX Visual differential indicator						
DLX	Electrical/visual differential indicator	DVY Visual differential indicator						
		PLUGS	See page 706					
X2	Differential indicator plug							

	Filter H length [mm] 2 253 3 295 4 343 5 465 Connections R G1 M6 G2 1/4" UNC G3 M6 G4-G5-G6 1/4" UNC Valves L [mm] [mm] S 168 138 B 182.5 152.5
IN IV IV IV IV IV IV IV IV IV IV	Connection for differential indicator X2 plug
L1 VENT VE	



FZD SPARE PARTS

Order number for spare parts

FZD 010		FZD 021 - FZD 051
	Q.ty: 1 pc. Q.ty: 1 pc. Q.t	Image: Property of the second seco
Item: Filter	2 3 (3a ÷ 3g) Filter Seal Kit code number Indicator co	4
series		onnection plug FPM
FZD 010	See 02050613 02050655	
FZD 021	order 02050796 02050797 X2H table 02050800 02050801	X2V
FZD 051	table 02050800 02050801	

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

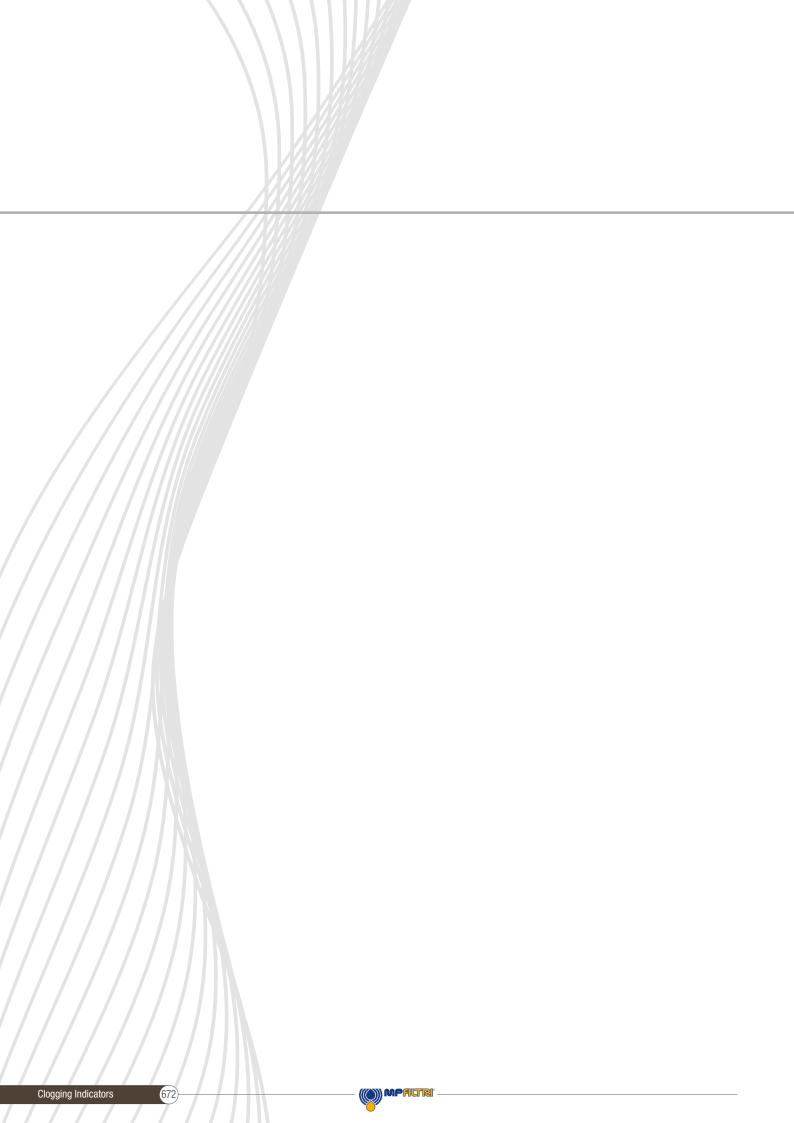
The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators

These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.

In the following pages you can find a reference guide about the types of clogging indicators available in the different families of MP Filtri's Hydraulic Filtration range of products.


670)

Clogging Indicators

DESIGNATION, ORDERING CODES & TECHNICAL DATA

INDEX

	Page
QUICK REFERENCE GUIDE	674
ORDERING CODES	
SUCTION FILTERS	679
RETURN FILTERS	680
RETURN / SUCTION FILTERS	682
SPIN-ON FILTERS	684
LOW & MEDIUM PRSSURE FILTERS	686
HIGH PRESSURE FILTERS	687
STAINLESS STEEL HIGH PRESSURE FILTERS	688
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	689
TECHNICAL DATA	
VACUUM INDICATORS	690
BAROMETRIC INDICATORS	692
DIFFERENTIAL INDICATORS	696
PLUGS	706

Ordering codes

UIUE	Urdering codes									
Filter family	Filter ser	ies	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators					
SUCTION FILTERS	With bypass valve 0.3 bar	ELIXIR* SFEX060-080-110-160	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01					
SUC		SF2 250 - 350 SF2 500 - 501 - 503 - 504 - 505 SF2 510 - 535 - 540	VVA20P01 VVR20P01	VEA21xA50P01	VLA21xA51P01 VLA21xA52P01 VLA21xA53P01 VLA21xA71P01					
	With bypass 1.75 bar	ELIXIR* RFEX060-080-110-160	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01					
	Without bypass	ELIXIR* RFEX060-080-110-160	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01					
	With bypass 1.75 bar	MDH 250	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01 DVS12HP01	BEA15HA50P01 BEM15HA41P01 DES12HA10P01 DES12HA30P01 DES12HA80P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01					
RETURN FILTERS	With bypass 3 bar	MDH 250	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVS25HP01	BEA20HA50P01 BEM20HA41P01 DES25HA10P01 DES25HA30P01 DES25HA80P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01					
μu	With bypass 1.75 bar	MPFX MPTX MPF MPT MPH	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01					
	With bypass 3 bar With bypass 2.5 bar	MPFX MPTX MPF MPT MPH	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01					
	With bypass 4.5 bar	MPLX	DVA20xP01	DEA20xA50P01 DEM20XX10P01 DEM20XX20P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01					
	With bypass 2.4 bar	FRI	DVM20xP01	DEM20XX20P01 DEM20XX30P01 DEM20XX35P01	DLE20xA50P01 DLE20xF50P01 DTA20xF70P01					

674

Ordering codes

					Ordering codes
Filter family	, Filter :	series	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		MRSX 116 - 165 - 166 Suction line	VVB20P01 VVS20P01		VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
RETURN / SUCTION FILTERS	With bypass valve 2.5 bar	MRSX 116 - 165 - 166 Return line	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
RETURN	With bypass valve 2.5 bar	LMP 124 Multiport	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVA20xP01 DVM20xP01	BEA20HA50P01 BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01 DEA20xA50P01 DEM20XX10P01 DEM20XX20P01 DEM20XX30P01 DEM20XX35P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01 DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SPIN-ON FILTERS	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350 MST 050 - 070 - 100 - 150	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DVA12xP01 DVM12xP01	DEA12xA50P01 DEM12xAxxP01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DLE20xF50P01 DLE20xF50P01 DTA12xA70P01 DTA12xF70P01 DTA20xA70P01 DTA20xF70P01

Ordering codes

Filter Filter		series	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		ELIXIR* LFEX060-080-110-160	DVS25HP01	DES25HA10P01 DES25HA30P01 DES25HA80P01	
LOW & MEDIUM PRESSURE FILTERS	With bypass valve 3.5 bar	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
LOW & PRESSUF		ELIXIR° LFEX060-080-110-160	DVS40HP01	DES40HA10P01 DES40HA30P01 DES40HA80P01	
	Without bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01 DTA50xF70P01
SSURE	With bypass valve 6 bar	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01
HIGH PRESSURE FILTERS	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEA70xA50P01 DEA95xA50P01 DEM70xx10P01 DEM70xx20P01 DEM70xx30P01 DEM70xx35P01 DEM95xx10P01 DEM95xx20P01 DEM95xx35P01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLA95xA51P01 DLA95xA52P01 DLA95xA71P01 DLE70xA50P01 DLE70xF50P01 DLE95xA50P01 DLE95xF50P01 DTA70xF70P01 DTA95xF70P01

Clogging Indicators

676

Ordering codes

				Ordering c					
Filter family	, Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators				
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01	DEZ50xA50P01	DLZ50xA50P01 DLZ70xA50P01 DLZ95xA50P01				
s steel Jre filters	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01	DEZ70xA50P01 DEZ95xA50P01					
STAINLESS STEEL HIGH PRESSURE FILTERS	With bypass valve 6 bar	FZP 039 - 136 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01				
	Without bypass valve	FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01 DLX95xA52P01				
	With bypass valve 6 bar	FMMX 050 FMM 050 -150	DVA50xP01 DVM50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01					
	Without bypass valve	FMMX 050 FMM 050 -150	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01					
ENTIALLY SSPHERE	With bypass valve 6 bar	FZP 039 - 136	DVX50xP01 DVY50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01					
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	Without bypass valve	FZP 039 - 136	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01					
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01						
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01						

OUT

IN

₹°

Suitable indicator types

V ACUUM INDICATORS

Vacuum indicators are used on the Suction line to check the efficiency of the filter element. They measure the pressure downstream of the filter element.

Standard items are produced with R 1/4" EN 10226 connection.

Available products with R 1/8" EN 10226 to be fitted on MPS series.

Vacuum indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "V".

Example:

Pressure indicators are used on the Return line to check the efficiency of the filter element.

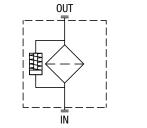
They measure the pressure upstream of the filter element.

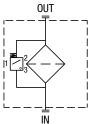
Standard items are produced with R 1/8" EN 10226 connection.

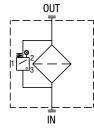
Barometric indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "B"

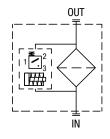
Example: B BVA14P01

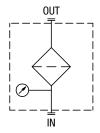
D IFFERENTIAL INDICATORS

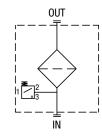

Differential indicators are used on the Pressure line to check the efficiency of the filter element.


They measure the pressure upstream and downstream of the filter element (differential pressure).

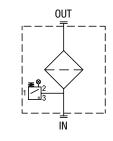

Standard items are produced with special connection G 1/2" size.


Also available in Stainless Steel models. Differential indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "D"


Example: D DVA20xP01



OUT


IN

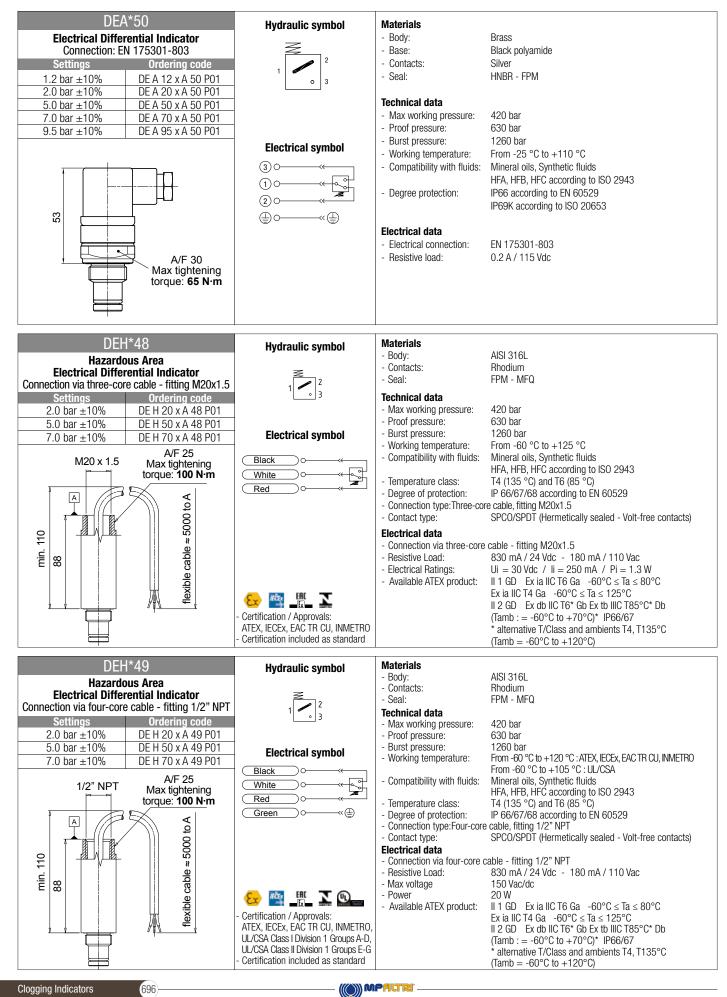
Ø

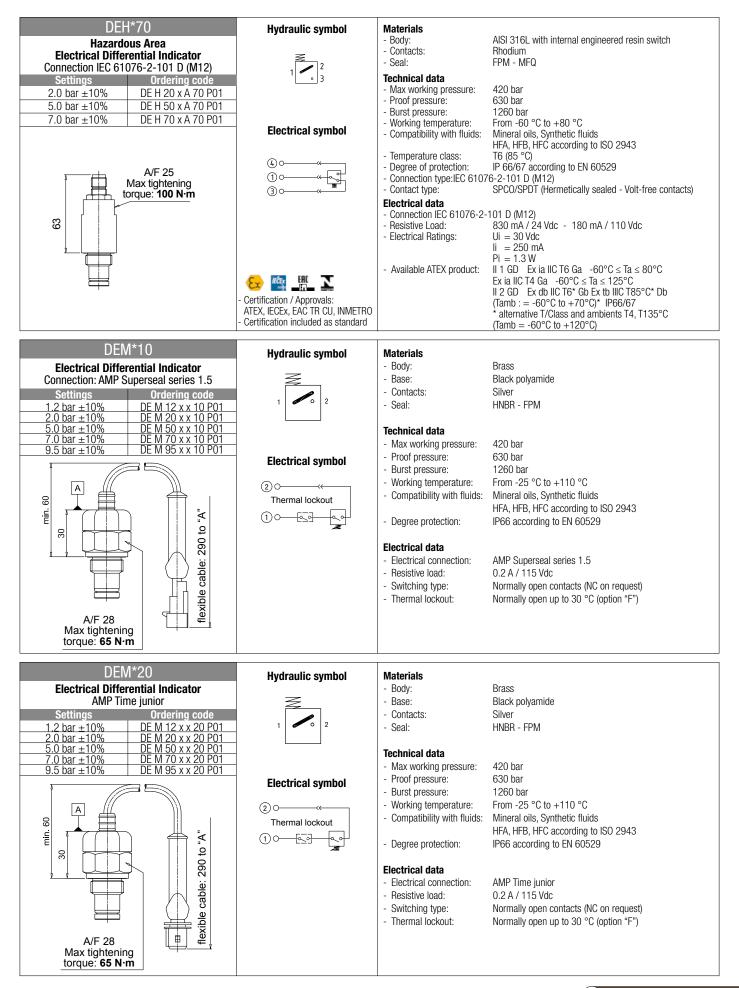
OUT

IN

CLOGGING INDICATORS STAINLESS STEEL HIGH PRESSURE FILTERS

Designation & Ordering code

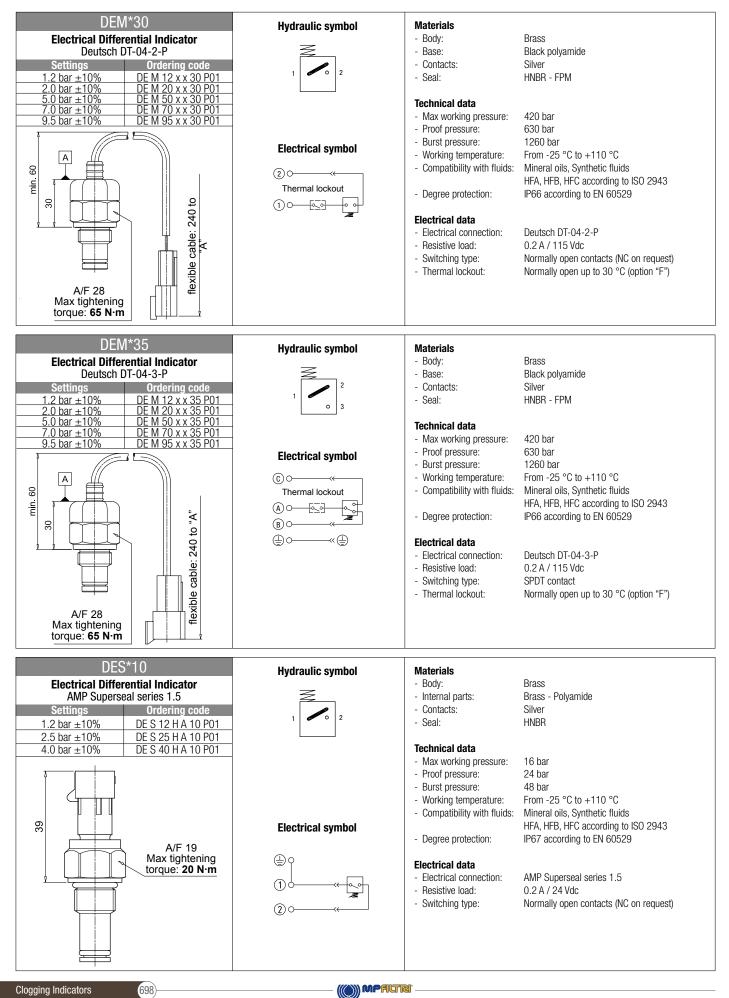

DIFFERENTIAL INDICATORS												
Sei	ries		Configuration example 1:	DE		Z	50] H		Α	50	P01
	Electrical differential indicator		Configuration example 2:	DL		Х	70			Α	52	P01
DL	Electrical / Visual differential indicator		J			T						
DV	Visual differential indicator											
Тур		V										
X	Standard type 420 bar	•										
Ŷ	Optional type 420 bar •	•										
Ż	700 bar (only for FZH)	•										
	essure setting											
	1.2 bar											
	2.0 bar											
	5.0 bar											
70	7.0 bar											
95	9.5 bar											
Sea		V										
H	HNBR • • •	•										
v	FPM • • •	•										
F	MFQ - •											
	ermostat DEX DEZ DL D	V										
Α	Without thermostat • • •	-										
Ele	ctrical connections		DEX	D								
			DEX HNBR FPI	M DI								
50	Connection EN 175301-803		• • •	-								
51	Connection EN 175301-803, transparent base with lamp			•					Optic			
52	Connection EN 175301-803, transparent base with lamp	s 110 Vdc		•	_				P01	_	iltri sta	ndard
									Pxx		omized	


DIFFERENTIAL INDICATOR PLUG

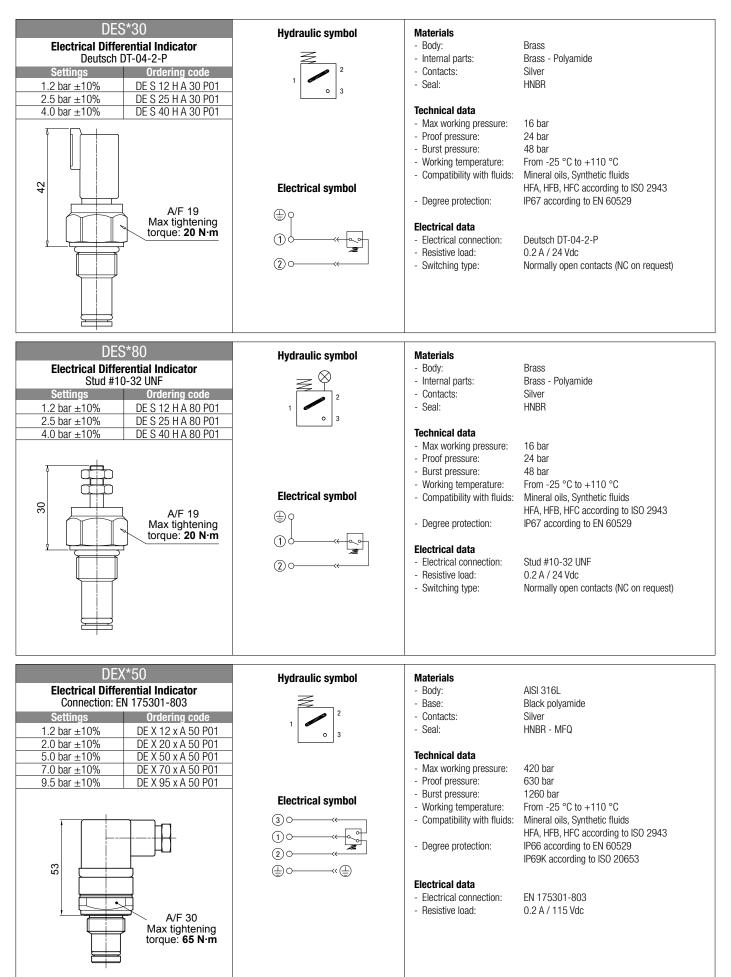
Series	Configuration example	X2] 🗌 H
X2 Differential indicator plug 420 bar			
X3 Differential indicator plug 700 bar (only for FZH)			
Seals			
H HNBR			
V FPM			

F MFQ

688)

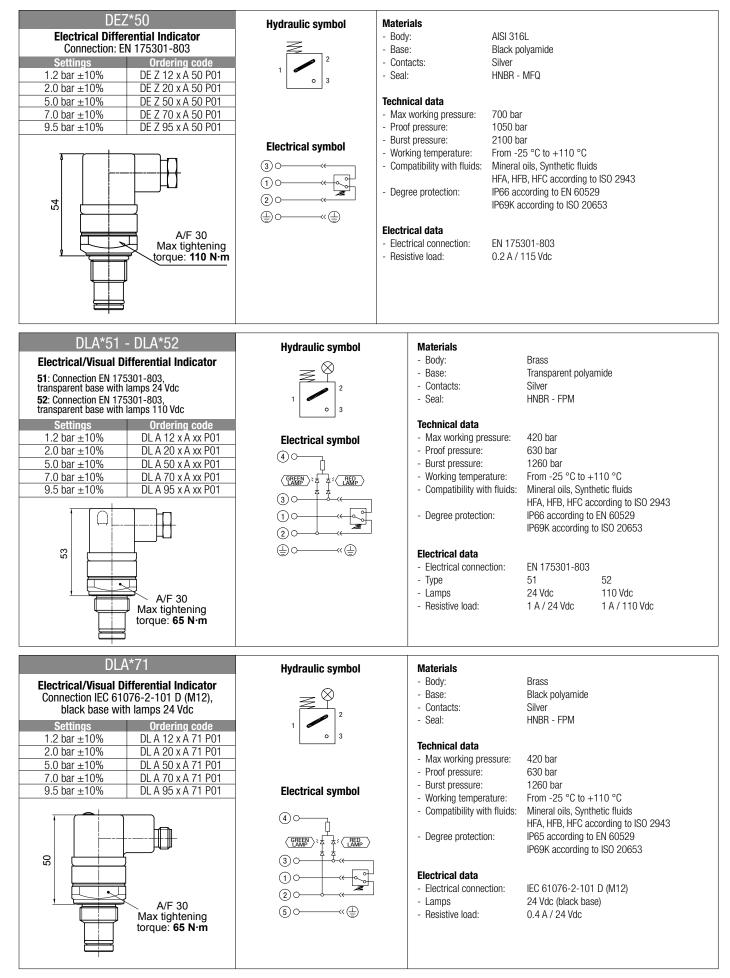


(697

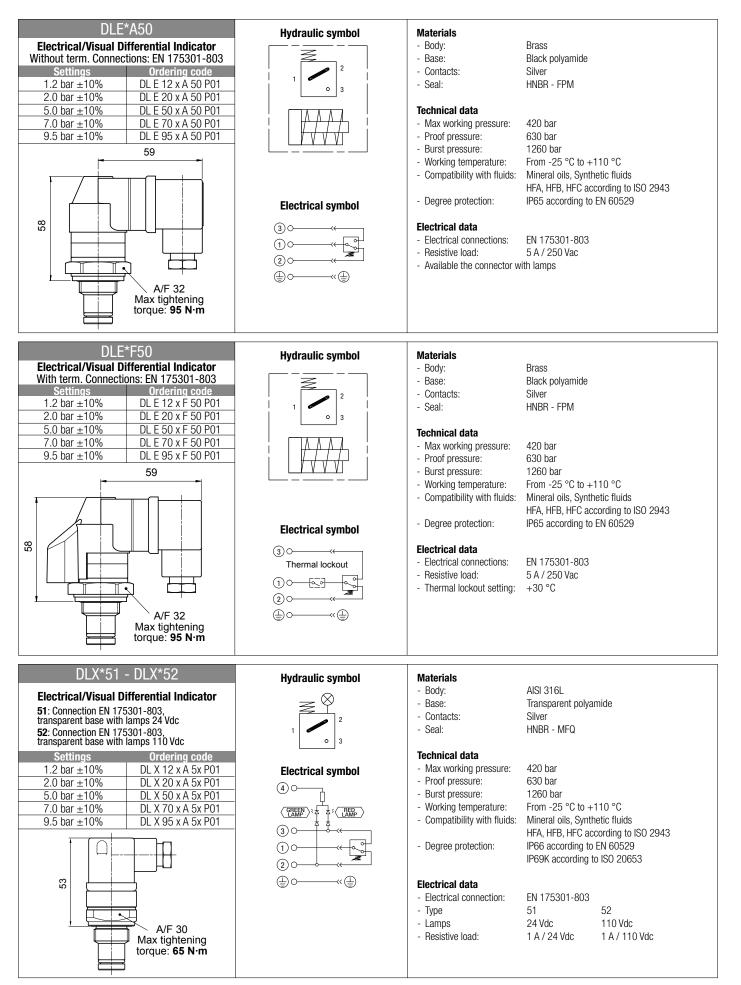

ERENTIAL INDICATORS

Dimensions

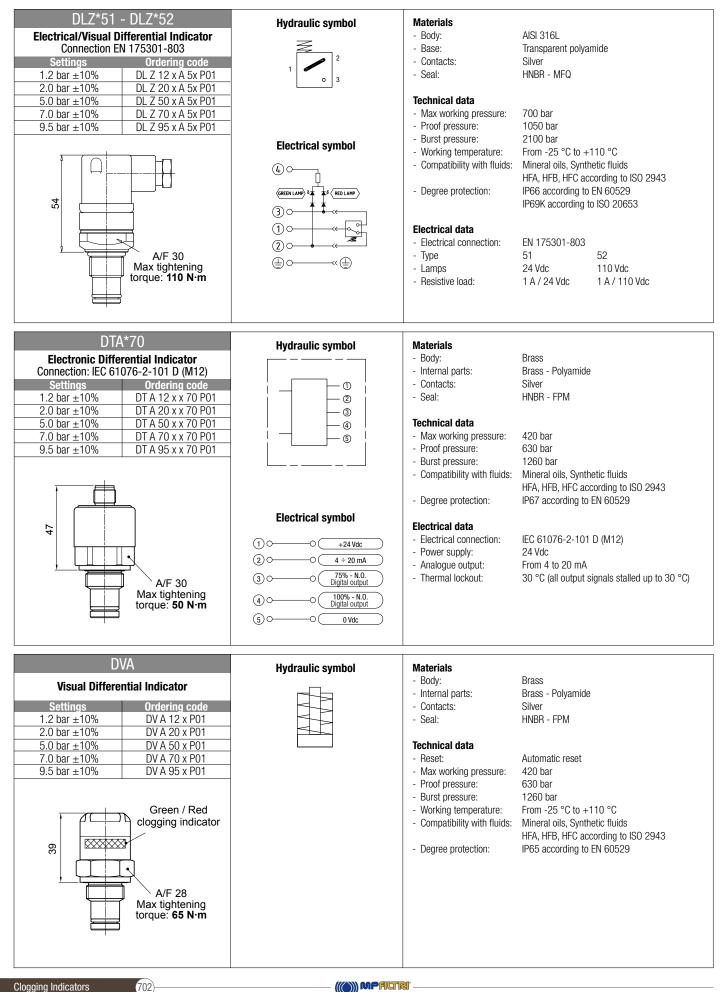
Clogging Indicators


698

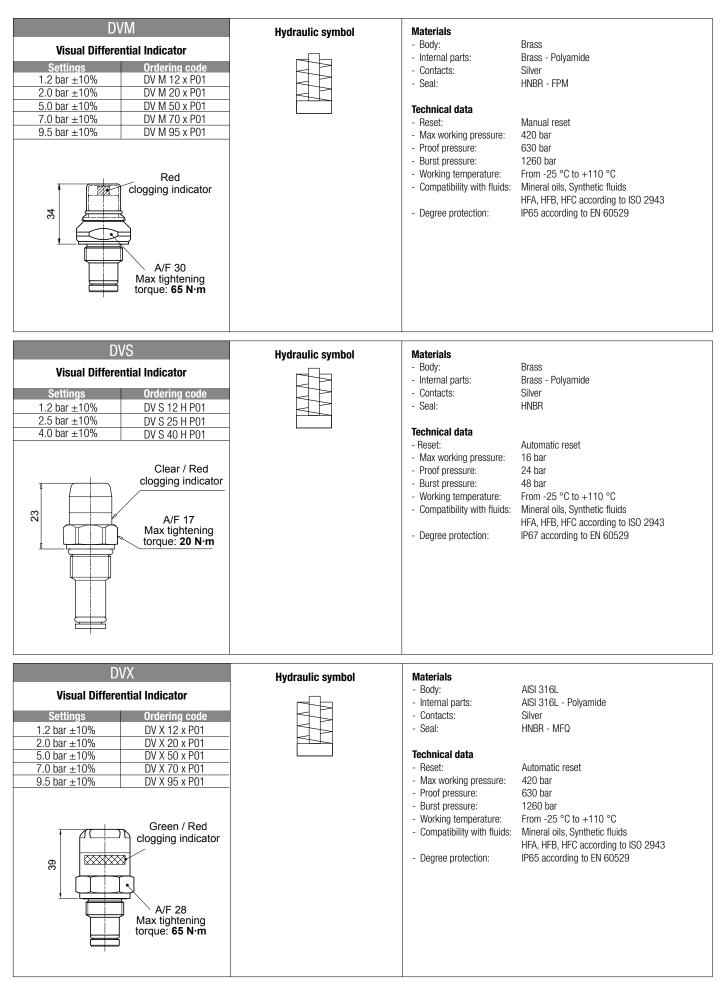
(()) MPALTRI


(699

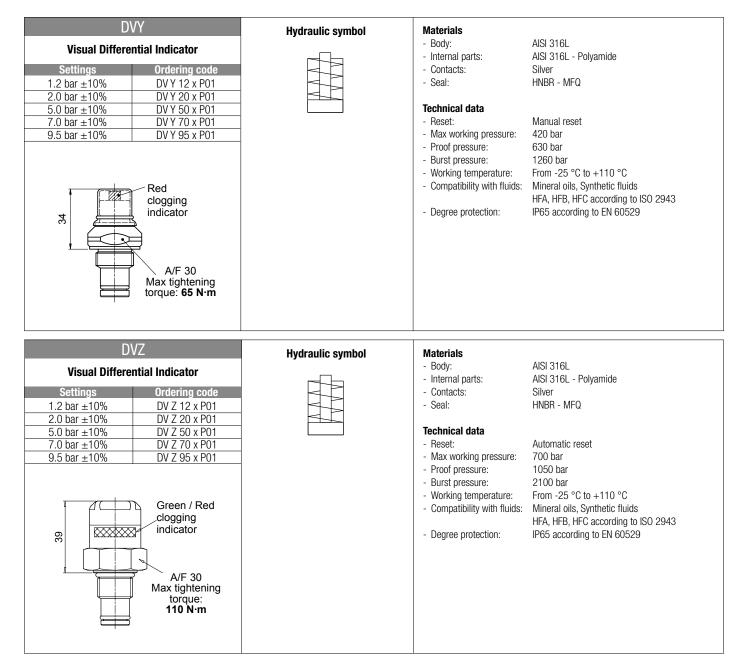
Clogging Indicators


700)—

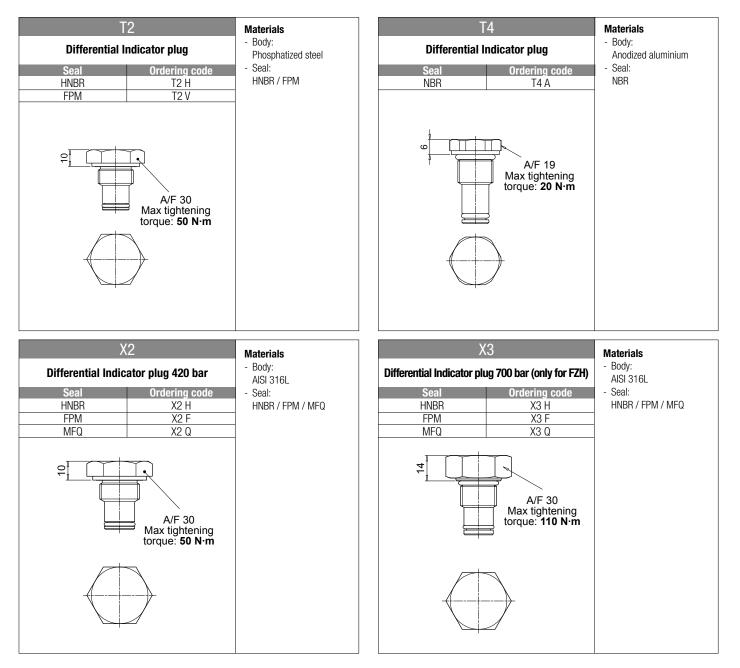
(())) MPALTRI



701



(()) MPALTRI


Clogging Indicators

DIFFERENTIAL INDICATORS

PLUGS

All data, details and words contained in this publication are provided for use by technically qualified personnel at their discretion, without warranty of any kind.
 MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercial reasons.
 For updated information please visit our website: *www.mpfiltri.com* The colors and the pictures of the products are purely indicative.
 Any reproduction, partial or total, of this document is strictly forbidden.
 All rights are strictly reserved

CANADA • CHINA • FRANCE • GERMANY • INDIA • SINGAPORE UNITED ARAB EMIRATES • UNITED KINGDOM • USA

PASSION TO PERFORM

in 🞯 D f

MP Filtri reserves the right to make modifications to the models and versions of the described products at any time for both technical and/or commercia For updated information please visit our website: www.mpfiltri.com. The colors and the pictures of the products are purely indicative. Any reproduction, partial or total, of this document is strictly forbidden. All rights are strictly reserved