
LOW & MEDIUM PRESSURE FILTERS

A WORLDWIDE LEADER IN THE FIELD OF HYDRAULIC FILTRATION EQUIPMENT.

Our company started life in 1964, when Bruno Pasotto decided to attempt to cater for the requests of a market still to be fully explored, with the study, design, development, production and marketing of a vast range of filters for hydraulic equipment, capable of satisfying the needs of manufacturers in all sectors. The quality of our products, our extreme competitiveness compared with major international producers and our constant activities of research, design and development has made us a worldwide leader in the field of hydraulic circuit filtering. Present for over 50 years in the market, we have played a truly decisive role in defining our sector, and by now we are a group capable of controlling our entire chain of production, monitoring all manufacturing processes to guarantee superior quality standards and to provide concrete solutions for the rapidly evolving needs of customers and the market.

HYDRAULIC FILTRATION PRODUCTS

1 Page INTRODUCTION 2 INDEX 4 COMPANY PROFILE 8 PRODUCT RANGE 11 CONTAMINATION MANAGEMENT 22 FILTER SIZING 24 CORRECTIVE FACTOR

up to Q_{max} (28) page I/min gpm 31 STR & MPA - MPM Submerged suction filter, with bypass or magnetic filter 1000 264 38 SFEX In-line filter with plastic bowl 100 26 49 SF2 250 - 350 Semi-submerged positive head suction filter, low flow rate 160 42 57 SF2 500 Semi-submerged positive head suction filter, high flow rate 700 185

679 CLOGGING INDICATORS

SELECTION SOFTWARE

26

			up to P _{max}		up to Q _{max}	
(66) p	page	RETURN FILTERS	bar	psi	I/min	gpm
68	RFEX	Return filter, tank mounted filter suitable for all mineral oil and water glycol applications	16	232	260	69
78	MPFX	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
106	MPLX	Tank top semi-immersed filter, standard filter element disassembly	10	145	1800	476
114	MPTX	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
132	MFBX	Bowl assembly	8	116	700	185
141	MPF	Tank top semi-immersed filter, standard filter element disassembly	8	116	900	238
169	MPT	Tank top semi-immersed filter, easy filter element disassembly	8	116	300	79
187	MFB	Bowl assembly	8	116	700	185
195	MDH	Heavy industrial applications integrated in the tank - air separation	10	145	500	132
203	MPH	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
227	MPI	Tank top semi-immersed filter, standard filter element disassembly	10	145	3500	925
239	FRI	Tank top semi-immersed filter, easy filter element disassembly, it can be used also as in-line filter	20	290	2500	660
255	RF2	Semi-immersed under-head filter, easy filter element disassembly	20	290	615	162
262	ACCESSORIES					
680	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q_{max}
264)	page	RETURN / SUCTION FILTERS	bar	psi	l/min	gpm
266	MRSX	Unique TANK TOP filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	10	145	250	66
279	LMP 124 MULTIPORT	Unique IN-LINE filter for mobile machinery, with combined filtration on return and suction to the inlet at the hydrostatic transmissions in closed circuit	80	1160	120	32
682	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q _{max}
288 F	age	SPIN-ON FILTERS	bar	psi	l/min	gpm
291	MPS	Low pressure filter, available with single cartridge (CS) for in-line or flange mounting or with two cartridge on the same axis on the opposite sides	12	174	365	96
684	CLOGGING INDICATORS					

			up to	P _{max}	up to	Q _{max}
(306) p	age	LOW & MEDIUM PRESSURE FILTERS	bar	psi	I/min	gpm
308	LFEX	In-line filter with plastic bowl	16	232	300	79
319	LMP 110 - 120 - 123 MULTIPORT	In-line filter with Multiport design for multiple choice connection	80	1160	175	46
335	LMP 210 - 211	In-line low & medium pressure filter, low flow rate	60	870	365	96
345	LMP 400 - 401 & 430 - 431	In-line low & medium pressure filter, high flow rate	60	870	780	206
357	LMP 950 - 951	In-line filter, available with 2 and up to 6 different heads	30	435	2400	634
365	LMP 952 - 953 - 954	In-line low pressure filter specifically designed to be mounted in series	25	363	4500	1189
377	LMD 211	In-line duplex medium pressure filter	60	870	200	53
385	LMD 400 - 401 & 431	In-line duplex low pressure filter	16	232	600	159
401	LMD 951	In-line duplex filter, available with 2 up to 6 different heads	16	232	1200	317
409		Filter elements designed according to DIN 24550		1		
411	LDP - LDD	In-line and duplex medium pressure filter	60	870	360	95
421	LMP 900 - 901	In-line low pressure filter	30	435	2000	528
429	LMP 902 - 903	In-line filter specifically designed to be mounted in series	20	290	3000	793
438	ACCESSORIES		20	1 200		
686	CLOGGING INDICATORS					
			up to	P _{max}	up to	Q _{max}
(440 F	page	HIGH PRESSURE FILTERS	bar	psi	I/min	gpm
442	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
451	FMM	Typical high pressure filter for mobile applications, low flow rate	420	6092	300	79
461	FHA 051	Filter optimized for use in high pressure operating systems, low flow rate	560	8122	150	40
469	FMP 039	Filter high pressure, low flow rate applications	110	1595	80	21
409	FMP	Filter high pressure, high flow rate applications	320	4641	500	132
489	FHP	Typical high pressure filter for mobile applications, high flow rate	450	6527	630	166
509	FHM	High pressure filter with intermediate manifold construction	320	4641	400	106
527	FHB	High pressure for block mounting	320	4641	485	128
541	FHF 325	In-line manifold top mounting	350	5076	550	145
551	FHD	In-line duplex high pressure filter	350	5076	250	66
565	HPB	Pressure filter kits for integration in control manifolds	420	6092	300	79
687	CLOGGING INDICATORS	riessure liner kits for linegration in control maillous	420	0092	300	19
007	OLOGGING INDICATORS		4	. D	um to	. 0
(F7A)	2000	CTAINILESS STEEL LIIGH DESSCHEE FILTERS		P _{max}		Q _{max}
(574)		STAINLESS STEEL HIGH PRESSURE FILTERS	bar	psi	I/min	gpm
577	FZP	In-line pressure filter with threaded mount	420	6092	160	42
587	FZH	In-line pressure filter with threaded mount for higher pressure	700	10153	80	21
597	FZX	In-line pressure filter with threaded mount up to 1000 bar	1000	14504	10	3
605	FZM	Manifold top mounting	320	4641	70	18
613	FZB	Manifold side mounting	320	4641	70	18
621	FZD	Duplex pressure filter for continuous operation requirements	350	5076	60	16
688	CLOGGING INDICATORS					
			up to	P _{max}	up to	Q _{max}
(632) F	page	FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	bar	psi	I/min	gpm
634	FMMX 050	Typical high pressure filter for mobile applications, low flow rate	420	6092	154	41
643	FZP	In-line pressure filter with threaded mount	700	10153	80	21
653	FZH	In-line pressure filter with threaded mount for higher pressure	1000	14504	10	3
663	FZX	In-line pressure filter with threaded mount up to 1000 bar	320	4641	70	18
689	CLOGGING INDICATORS					

674	QUICK REFERENCE	GUIDE
-----	-----------------	-------

679 DESIGNATION AND ORDERING CODES

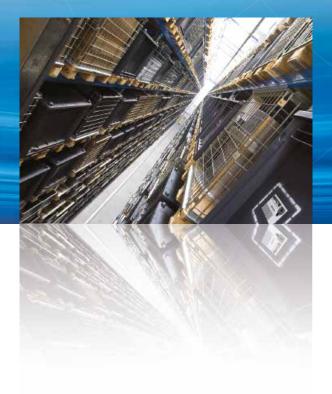
690 TECHNICAL DATA

WORLDWIDE PRESENCE

Our foreign Branches enable us to offer a diversified range of products that allow us to successfully face the aggressive challenge of international competition, and also to maintain a stable presence at a local level.

The Group boasts **9** business branches

TECHNOLOGY


Our constant quest for excellence in quality and technological innovation allows us to offer only the best solutions and services for applications in many fields, including general industry, test rigs, lubrication, heavy engineering, renewable energies, naval engineering, offshore engineering, aviation systems, emerging technologies and mobile plant (i.e. tractors, excavators, concrete pumps, platforms).

AND PRODUCTION

Our high level of technological expertise means we can rely entirely on our own resources, without resorting to external providers. This in turn enables us to satisfy a growing number of customer requests, also exploiting our constantly updated range of machines and equipment, featuring fully-automated workstations capable of 24-hour production.

SUCTION **FILTERS**

Flow rates up to 875 l/min

Mounting:

- Tank immersed
- In-Line
- In tank with shut off valve
- In tank with flooded suction

RETURN FILTERS

Flow rates up to 3000 l/min

Pressure

up to 20 bar

- Mounting:
- In-Line
- Tank top
- In single and duplex designs

RETURN / SUCTION **FILTERS**

Pressure up to 80 bar

Mounting:

Flow rates

up to 300 l/min

- In-Line
- Tank top

SPIN-ON **FILTERS**

Flow rates up to 365 l/min

Pressure up to 35 bar

Mounting:

- In-Line
- Tank top

LOW & MEDIUM PRESSURE **FILTERS**

Flow rates up to 3000 I/min

Pressure up to 80 bar

Mounting:

- In-Line
- Parallel manifold version
- In single and duplex designs

HIGH **PRESSURE FILTERS**

Flow rates up to 750 l/min

Pressure from 110 bar up to 560 bar

Mounting:

- In-Line
- Manifold
- In single
- and duplex designs

PRODUCT RANGE

MP Filtri can offer a vast and articulated range of products for the global market, suitable for all industrial sectors using hydraulic equipment.

This includes filters (suction, return, return/suction, spin-on, pressure, stainless steel pressure, ATEX filters) and structural components (motor/pump bell-housings, transmission couplings, damping rings, foot brackets, aluminium tanks, cleaning covers).

We can provide all the skills and solutions required by the modern hydraulics industry to monitor contamination levels and other fluid conditions.

Mobile filtration units and a full range of accessories allow us to supply everything necessary for a complete service in the hydraulic circuits.

STAINLESS STEEL HIGH PRESSURE FILTERS

Flow rates up to 150 l/min

Pressure from 320 bar up to 1000 bar

Mounting:

- In-Line
- Manifold
- In single and duplex designs

FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE

Flow rates up to 154 l/min

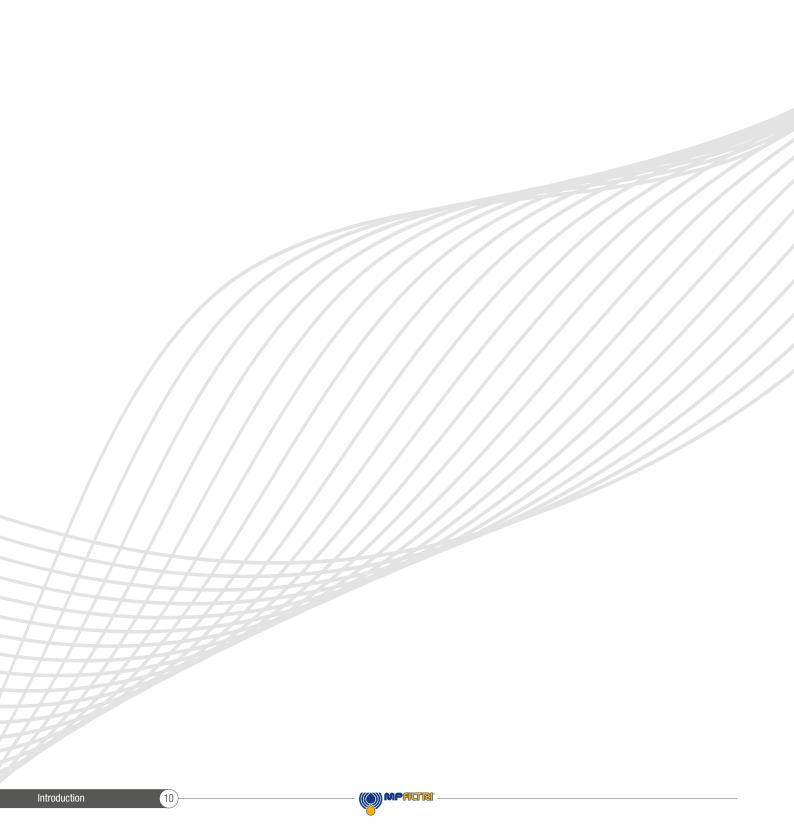
Pressure from 420 bar up to 1000 bar

Mounting:

- In-Line

CONTAMINATION CONTROL SOLUTIONS

- Off-line, in-line particle counters
- Off-line bottle sampling products
- Fully calibrated using relevant ISO standards
- A wide range of variants to support fluid types and communication protocols
- Mobile Flltration Units with flow rates from 15 I/min up to 200 I/min


POWER TRANSMISSION PRODUCTS

- Aluminium bell-housings for motors from 0.12 kW to 400 kW
- Couplings in Aluminium
 Cast Iron Steel
- Damping rings
- Foot bracket
- Aluminium tanks
- Cleaning covers

TANK ACCESSORIES

- Oil filler and air breather plugs
- Optical and electrical level gauges
- Pressure gauge valve selectors
- Pipe fixing brackets
- Pressure gauges

CONTAMINATION MANAGEMENT

INDEX

		Pag
1	HYDRAULIC FLUIDS	12
2	FLUIDS CONTAMINATION	12
3	EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS	12
4	MEASURING THE SOLID CONTAMINATION LEVEL	13
5	FILTRATION TECHNOLOGIES	16
6	RECOMMENDED CONTAMINATION CLASSES	17
7	TYPES OF FILTERS	17
8	FILTER SIZING PARAMETERS	18
9	APPLICABLE STANDARDS FOR FILTER DEVELOPMENT	18
10	WATER IN HYDRAULIC AND LUBRICATING FLUIDS	19
(11)	THE ANTI-STATIC FILTERS zerospark +	20

1 HYDRAULIC FLUIDS

The fluid is the vector that transmits power, energy within an oleodynamic circuit. In addition to transmitting energy through the circuit, it also performs additional functions such as lubrication, protection and cooling of the surfaces.

The classification of fluids used in hydraulic systems is coded in many regulatory references, different Standards.

The most popular classification criterion divides them into the following families:

 MINERAL OILS Commonly used oil deriving fluids.

- FIRE RESISTANT FLUIDS

Fluids with intrinsic characteristics of incombustibility or high flash point.

- SYNTHETIC FLUIDS

Modified chemical products to obtain specific optimized features.

- ECOLOGICAL FLUIDS

Synthetic or vegetable origin fluids with high biodegradability characteristics.

The choice of fluid for an hydraulic system must take into account several parameters.

These parameters can adversely affect the performance of an hydraulic system, causing delay in the controls, pump cavitation, excessive absorption, excessive temperature rise, efficiency reduction, increased drainage, wear, jam/block or air intake in the plant.

The main properties that characterize hydraulic fluids and affect their choice are:

- DYNAMIC VISCOSITY

It identifies the fluid's resistance to sliding due to the impact of the particles forming it.

- KINEMATIC VISCOSITY

It is a widespread formal dimension in the hydraulic field.

It is calculated with the ratio between the dynamic viscosity and the fluid density

Kinematic viscosity varies with temperature and pressure variations.

- VISCOSITY INDEX

This value expresses the ability of a fluid to maintain viscosity when the temperature changes.

A high viscosity index indicates the fluid's ability to limit viscosity variations by varying the temperature.

- FILTERABILITY INDEX

It is the value that indicates the ability of a fluid to cross the filter materials. A low filterability index could cause premature clogging of the filter material.

WORKING TEMPERATURE

Working temperature affects the fundamental characteristics of the fluid. As already seen, some fluid characteristics, such as cinematic viscosity, vary with the temperature variation.

When choosing a hydraulic oil, must therefore be taken into account of the environmental conditions in which the machine will operate.

- COMPRESSIBILITY MODULE

Every fluid subjected to a pressure contracts, increasing its density. The compressibility module identifies the increase in pressure required to cause a corresponding increase in density.

- HYDROLYTIC STABILITY

It is the characteristic that prevents galvanic pairs that can cause wear in the plant/system.

- ANTIOXIDANT STABILITY AND WEAR PROTECTION

These features translate into the capacity of a hydraulic oil to avoid corrosion of metal elements inside the system.

- HEAT TRANSFER CAPACITY

It is the characteristic that indicates the capacity of hydraulic oil to exchange heat with the surfaces and then cool them.

(2) FLUID CONTAMINATION

Whatever the nature and properties of fluids, they are inevitably subject to contamination. Fluid contamination can have two origins:

- INITIAL CONTAMINATION

Caused by the introduction of contaminated fluid into the circuit, or by incorrect storage, transport or transfer operations.

- PROGRESSIVE CONTAMINATION

Caused by factors related to the operation of the system, such as metal surface wear, sealing wear, oxidation or degradation of the fluid, the introduction of contaminants during maintenance, corrosion due to chemical or electrochemical action between fluid and components, cavitation. The contamination of hydraulic systems can be of different nature:

- SOLID CONTAMINATION

For example rust, slag, metal particles, fibers, rubber particles, paint particles

- or additives

- LIQUID CONTAMINATION

For example, the presence of water due to condensation or external infiltration or acids

- GASEOUS CONTAMINATION

For example, the presence of air due to inadequate oil level in the tank, drainage in suction ducts, incorrect sizing of tubes or tanks.

3 EFFECTS OF CONTAMINATION ON HYDRAULIC COMPONENTS

Solid contamination is recognized as the main cause of malfunction, failure and early degradation in hydraulic systems. It is impossible to delete it completely, but it can be effectively controlled by appropriate devices.

CONTAMINATION IN PRESENCE OF LARGE TOLERANCES

CONTAMINATION IN PRESENCE OF NARROW TOLERANCES

Solid contamination mainly causes surface damage and component wear.

- ABRASION OF SURFACES

Cause of leakage through mechanical seals, reduction of system performance, failures.

- SURFACE EROSION

Cause of leakage through mechanical seals, reduction of system performance, variation in adjustment of control components, failures.

- ADHESION OF MOVING PARTS Cause of failure due to lack of lubrication.
- DAMAGES DUE TO FATIGUE Cause of breakdowns and components breakdown.

ADHESION

EROSION

Liquid contamination mainly results in decay of lubrication performance and protection of fluid surfaces.

DISSOLVED WATER

- INCREASING FLUID ACIDITY Cause of surface corrosion and premature fluid oxidation
- GALVANIC COUPLE AT HIGH TEMPERATURES Cause of corrosion

FREE WATER - ADDITIONAL EFFECTS

- DECAY OF LUBRICANT PERFORMANCE Cause of rust and sludge formation, metal corrosion and increased solid contamination
- BATTERY COLONY CREATION Cause of worsening in the filterability feature
- ICE CREATION AT LOW TEMPERATURES Cause damage to the surface
- ADDITIVE DEPLETION Free water retains polar additives

Gaseous contamination mainly results in decay of system performance.

- CUSHION SUSPENSION Cause of increased noise and cavitation.
- FLUID OXIDATION Cause of corrosion acceleration of metal parts.

- MODIFICATION OF FLUID PROPERTIES (COMPRESSIBILITY MODULE, DENSITY, VISCOSITY)

Cause of system's reduction of efficiency and of control.

It is easy to understand how a system without proper contamination management is subject to higher costs than a system that is provided.

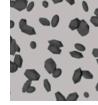
MAINTENANCE

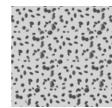
Increase maintenance activities, spare parts, machine stop costs.

ENERGY AND EFFICIENCY

Efficiency and performance reduction due to friction, drainage, cavitation.

(4) MEASURING THE SOLID CONTAMINATION LEVEL


The level of contamination of a system identifies the amount of contaminant contained in a fluid.


This parameter refers to a unit volume of fluid.

The level of contamination may be different at different points in the system. From the information in the previous paragraphs it is also apparent that the level of contamination is heavily influenced by the working conditions of the system, by its working years and by the environmental conditions.

What is the size of the contaminating particles that we must handle in our hydraulic circuit?

HUMAN HAIR (75 µm)

MINIMUM DIMENSION VISIBLE WITH HUMAN EYES (40 µm)

TYPICAL CONTAMINANT DIMENSION IN A HYDRAULIC CIRCUIT (4 - 14 μm)

Contamination level analysis is significant only if performed with a uniform and repeatable method, conducted with standard test methods and suitably calibrated equipment.

To this end, ISO has issued a set of standards that allow tests to be conducted and express the measured values in the following ways.

- GRAVIMETRIC LEVEL - ISO 4405

The level of contamination is defined by checking the weight of particles collected by a laboratory membrane. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard.

The volume of fluid is filtered through the membrane by using a suitable suction system. The weight of the contaminant is determined by checking the weight of the membrane before and after the fluid filtration.

CONTAMINATED **MEMBRANE**

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4406

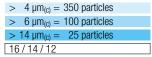
The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. Measurement is performed by Automatic Particle Analisers (APCs).

Following the count, the contamination classes are determined, corresponding to the number of particles detected in the unit of fluid.

The most common classification methods follow ISO 4406 and SAE AS 4059 (Aerospace Sector) regulations. NAS 1638 is still used although obsolete.

Classification example according to ISO 4406

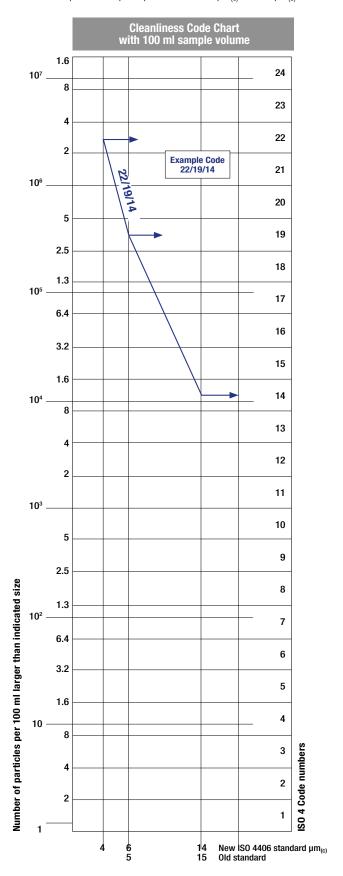
The International Standards Organization standard ISO 4406 is the preferred method of quoting the number of solid contaminant particles in a sample. The level of contamination is defined by counting the number of particles of certain dimensions per unit of volume of fluid. The measurement is performed by Automatic Particle Analisers (APCs) or Particle Contamination Monitors (PCMs).


The numbers represent a code which identifies the number of particles of certain sizes in 1ml of fluid. Each code number has a particular size range. The first scale number represents the number of particles equal to or larger than 4 $\mu m_{(c)}$ per millilitre of fluid;

The second scale number represents the number of particles equal to or larger than 6 μ m_(c) per millilitre of fluid;

The third scale number represents the number of particles equal to or larger than 14 μ m(c) per millilitre of fluid.

ISO 4406 - Allocation of Scale Numbers


Class	Number of particles per ml					
	Over	Up to				
28	1 300 000	2 500 000				
27	640 000	1 300 000				
26	320 000	640 000				
25	160 000	320 000				
24	80 000	160 000				
23	40 000	80 000				
22	20 000	40 000				
21	10 000	20 000				
20	5 000	10 000				
19	2 500	5 000				
18	1 300	2 500				
17	640	1 300				
16	320	640				
15	160	320				
14	80	160				
13	40	80				
12	20	40				
11	10	20				
10	5	10				
9	2.5	5				
8	1.3	2.5				
7	0.64	1.3				
6	0.32	0.64				
5	0.16	0.32				
4	0.08	0.16				
3	0.04	0.08				
2	0.02	0.04				
1	0.01	0.02				
0	0	0.01				

ISO 4406 Cleanliness Code System

Microscope counting examines the particles differently to APCs and the code is given with two scale numbers only.

These are at 5 μ m and 15 μ m equivalent to the 6 μ m_(c) and 14 μ m_(c) of APCs.

- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE SAE AS4059-1 and SAE AS4059-2

Classification example according to SAE AS4059 - Rev. G

The code, prepared for the aerospace industry, is based on the size, quantity, and particle spacing in a 100 ml fluid sample. The contamination classes are defined by numeric codes, the size of the contaminant is identified by letters (A-F).

This SAE Aerospace Standard (AS) defines cleanliness levels for particulate contamination of hydraulic fluids and includes methods of reporting data relating to the contamination levels. Tables 1 and 2 below provide differential and cumulative particle counts respectively for counts obtained by an automatic particle counter, e.g. LPA3.

Table 1 - Class for differential measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml								
	5-15 μm	15-25 μm	25-50 μm	50-100 μm	>100 µm	(1)			
	6-14 μm _(c)	14-21 μm _(c)	21-38 μm _(c)	38-70 μm _(c)	>70 μm _(c)	(2)			
00	125	22	4	1	0				
0	250	44	8	2	0	-			
1	500	89	16	3	1	-			
2	1 000	178	32	6	1	-			
3	2 000	356	63	11	2	_			
4	4 000	712	126	22	4				
5	8 000	1 425	253	45	8	_			
6	16 000	2 850	506	90	16				
7	32 000	5 700	1 012	180	32				
8	64 000	11 400	2 025	360	64				
9	128 000	22 800	4 050	720	128				
10	256 000	45 600	8 100	1 440	256	_			
11	512 000	91 200	16 200	2 880	512	_			
12	1 024 000	182 400	32 400	5 760	1 024				

6 - 14 μ m_(c) = 15 000 particles 14 - 21 μ m_(c) = 2 200 particles $21 - 38 \mu m_{(c)} =$ 200 particles $38 - 70 \, \mu m_{(c)} =$ SAE AS4059 REV G - Class 6

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis

software, based on projected area equivalent

Table 2 - Class for cumulative measurement

Class	Dimension of contaminant Maximum Contamination Limits per 100 ml							
	>1 µm	>5 µm	>15 µm	>25 µm	>50 µm	>100 µm	(1)	
	>4 µm _(c)	>6 µm _(c)	>14 µm _(c)	>21 µm _(c)	>38 µm _(c)	>70 µm _(c)	(2)	
000	195	76	14	3	1	0		
00	390	152	27	5	1	0		
0	780	304	54	10	2	0		
1	1 560	609	109	20	4	1		
2	3 120	1 217	217	39	7	1		
3	6 250	2 432	432	76	13	2		
4	12 500	4 864	864	152	26	4		
5	25 000	9 731	1 731	306	53	8		
6	50 000	19 462	3 462	612	106	16		
7	100 000	38 924	6 924	1 224	212	32		
	200 000	77 849	13 849	2 449	424	64		
9	400 000	155 698	27 698	4 898	848	128		
10	800 000	311 396	55 396	9 796	1 696	256		
11	1 600 000	622 792	110 792	19 592	3 392	512		
12	3 200 000	1 245 584	221 584	39 184	6 784	1 024		

 $> 4 \mu m_{(c)} = 45 000 \text{ particles}$ $> 6 \mu m_{(c)} = 15 000 \text{ particles}$

 $> 14 \mu m_{(c)} = 1500 \text{ particles}$ $> 21 \, \mu m_{(c)} =$

SAE AS4059 REV G

cpc* Class 6 6/6/5/5/4/2 cumulative particle count

(1) Size range, optical microscope, based on longest dimension as measured per AS598 or ISO 4407. (2) Size range, APC calibrated per ISO 11171 or an optical or electron microscope with image analysis software, based on projected area equivalent diameter. (3) Contamination classes and particle count limits are identical to NAS 1638.

- CLASSES OF CONTAMINATION ACCORDING TO NAS 1638 (January 1964)

The NAS system was originally developed in 1964 to define contamination classes for the contamination contained within aircraft components.

The application of this standard was extended to industrial hydraulic systems simply because nothing else existed at the time.

The coding system defines the maximum numbers permitted of 100 ml volume at various size intervals (differential counts) rather than using cumulative counts as in ISO 4406. Although there is no guidance given in the standard on how to quote the levels, most industrial users quote a single code which is the highest recorded in all sizes and this convention is used on MP Filtri APC's.

The contamination classes are defined by a number (from 00 to 12) which indicates the maximum number of particles per 100 ml, counted on a differential basis, in a given size bracket.

Size Range Classes (in microns)

Maximum Contamination Limits per 100 ml								
Class	5-15	15-25	25-50	50-100	>100			
00	125	22	4	1	0			
0	250	44	8	2	0			
1	500	89	16	3	1			
2	1 000	178	32	6	1			
3	2 000	356	63	11	2			
4	4 000	712	126	22	4			
5	8 000	1 425	253	45	8			
6	16 000	2 850	506	90	16			
7	32 000	5 700	1 012	180	32			
8	64 000	11 400	2 025	360	64			
9	128 000	22 800	4 050	720	128			
10	256 000	45 600	8 100	1 440	256			
11	512 000	91 200	16 200	2 880	512			
12	1 024 000	182 400	32 400	5 760	1 024			

 $5-15 \, \mu m = 42 \, 000 \, particles$ $15-25 \, \mu \text{m} = 2 \, 200 \, \text{particles}$ 25-50 μm = 150 particles $50-100 \, \mu m =$ 18 particles

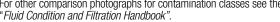
- CUMULATIVE DISTRIBUTION OF THE PARTICLES SIZE - ISO 4407

The level of contamination is defined by counting the number of particles collected by a laboratory membrane per unit of fluid volume. The measurement is done by a microscope. The membrane must be cleaned, dried and desiccated, with fluid and conditions defined by the Standard. The fluid volume is filtered through the membrane, using a suitable suction system.

The level of contamination is identified by dividing the membrane into a predefined number of areas and by counting the contaminant particles using a suitable laboratory microscope.

MICROSCOPE CONTROL AND MEASUREMENT

Example figure 1 and 2


COMPARISON PHOTOGRAPH'S 1 graduation = 10um

For other comparison photographs for contamination classes see the

- CLEANLINESS CODE COMPARISON

Although ISO 4406 standard is being used extensively within the hydraulics industry other standards are occasionally required and a comparison may be requested. The table below gives a very general comparison but often no direct comparison is possible due to the different classes and sizes involved.

ISO 4406	SAE AS4059 Table 2	SAE AS4059 Table 1	NAS 1638
> 4 μm _(c) 6 μm _(c) 14 μm _(c)	> 4 μm _(c) 6 μm _(c) 14 μm _(c)	4-6 6-14 14-21 21-38 38-70 >70	5-15 15-25 25-50 50-100 >100
23 / 21 / 18	13A / 12B / 12C	12	12
22 / 20 / 17	12A / 11B / 11C	11	11
21 / 19 / 16	11A / 10B / 10C	10	10
20 / 18 / 15	10A / 9B / 9B	9	9
19 / 17 / 14	9A / 8B / 8C	8	8
18 / 16 / 13	8A / 7B / 7C	7	7
17 / 15 / 12	7A / 6B / 6C	6	6
16 / 14 / 11	6A / 5B / 5C	5	5
15 / 13 / 10	5A / 4B / 4C	4	4
14 / 12 / 09	4A / 3B / 3C	3	3

Microfibre INNER SUPPORT LAYER Polyester Microfibre PRE-FILTRATION LAYER Stainless Carbon steel steel EXTERNAL / INNER PROTECTIVE WIRE MESH

Microfibre filtration technology

The filtration efficiency of metallic mesh filtrations is defined as the maximum particle size that can pass through the meshes of the filtering grid.

The efficiency of microfibre and paper filtration $(\mathcal{B}_{x(c)})$ is defined through a lab test called Multipass Test. The efficiency value $(\mathcal{B}_{x(c)})$ is defined as the ratio between the number of particles of certain dimensions detected upstream and downstream of the filter.

 $\frac{\text{Upstream particles number} > \text{X } \mu\text{m}_{(c)}}{\text{Downstream particles number} > \text{X } \mu\text{m}_{(c)}} = \beta_{\text{X(c)}}$

Value $(B_{x(c)})$	2	10 75		100	200	1000	
Efficiency	50%	90%	98.7%	99%	99.5%	99.9%	

Test conditions, such as type of fluid to be used (MIL-H-5606), type of contaminant to be used (ISO MTD), fluid viscosity, test temperature, are determined by ISO

In addition to the filtration efficiency value during the Multipass test, other important features, such as filtration stability (β stability) and dirt holding capacity (DHC), are also tested.

Poor filtration stability is the cause of the filtering quality worsening as the filter life rises. Low dirt holding capacity causes a reduction in the life of the filter.

(5) FILTRATION TECHNOLOGIES

Various mechanisms such as mechanical stoppage, magnetism, gravimetric deposit, or centrifugal separation can be used to reduce the level of contamination.

The mechanical stoppage method is most effective and can take place in two ways:

- SURFACE FILTRATION

It is by direct interception. The filter prevents particles larger than the pores from continuing in the plant / system. Surface filters are generally manufactured with metal canvases or meshes.

- DEPTH FILTERING

Filters are constructed by fiber interlacing. Such wraps form pathways of different shapes and sizes in which the particles remain trapped when they find smaller apertures than their diameter.

Depth filters are generally produced with papers impregnated with phenolic resins, metal fibers or inorganic fibers.

In inorganic fiber filtration, commonly called microfibre, the filtering layers are often overlapped in order to increase the ability to retain the contaminant.

PAPER FILTRATION

MICROFIBER FILTRATION

Filtration ISO Standard Comparison							
$\beta_{\rm X(C)} > 1000$	$\beta_{\rm X} > 200$	MP Filtri					
ISÓ 16889	ISO 4572	Filter media code					
5 μm _(c)	3 μm	A03					
7 μm _(c)	6 μm	A06					
10 μm _(C)	10 μm	A10					
16 μm _(C)	18 µm	A16					
21 μm _(c)	25 μm	A25					

(6) RECOMMENDED CONTAMINATION CLASSES

Any are the nature and the properties of fluids, they are inevitably subject to contamination. The level of contamination can be managed by using special components called filters.

Hydraulic components builders, knowing the problem of contamination, recommend the filtration level appropriate to the use of their products.

Example of recommended contamination levels for pressures below 140 bar.

Dioton numno						
Piston pumps	•					
with fixed flow rate						
Piston pumps			•			
with variable flow rate			_			
Vane pumps						
with fixed flow rate		•				
Vane pumps						
with variable flow						
Engines	•					
Hydraulic cylinders	•					
Actuators					•	
Test benches						•
Check valve	•					
Directional valves	•					
Flow regulating valves	•					
Proportional valves				•		
Servo-valves					•	
Flat bearings			•			
Ball bearings				•		
ISO 4406 CODE	20/18/15	19/17/14	18/16/13	17/15/12	16/14/11	15/13/10
Recommended	B _{21(c)}	B _{15(c)}	B _{10(c)}	B7(c)	B7(c)	B _{5(c)}
filtration $\beta x(c) \ge 1.000$	>1000	>1000	>1000	>1000	>1000	>1000
MP Filtri media code	A25	A16	A10	A06	A06	A03

The common classification of filters is determined by their position in the plant.

7 TYPES OF FILTERS

Suction filters

They are positioned before the pump and are responsible for protecting the pump from dirty contaminants. It also provides additional flow guidance to the pump suction line

Being subject to negligible working pressures are manufactured with simple and lightweight construction.

They are mainly produced with gross grade surface filtrations, mainly $60 \div 125 \,\mu m$. They can be equipped with a magnetic filter for retaining ferrous particles.

They are generally placed under the fluid head to take advantage of the piezometric thrust of the fluid and reduce the risk of cavitation.

There are two types of suction filters:

- IMMERSION FILTERS
 Simple filter element screwed on the suction pipe
- FILTERS WITH CONTAINER
 Container filters that are more bulky, but provide easier maintenance of the tank

Delivery (or Pressure) filters

They are positioned between the pump and most sensitive regulating and controlling components, such as servo valves or proportional valves, and are designed to ensure the class of contamination required by the components used in the circuit.

Being subjected to high working pressures are manufactured with more robust and articulated construction. In particular situations of corrosive environments or aggressive fluids can be made of stainless steel.

They are mainly produced with filtering depths of $3 \div 25 \,\mu\text{m}$.

They can be manufactured with in-line connections, with plate or flange connections or directly integrated into the circuit control blocks / manifolds. They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the plant / system is in operation without interruption of the working cycle.

Return filters

They are positioned on the return line to the tank and perform the task of filtering the fluid from particles entering the system from the outside or generated by the wear of the components.

They are generally fixed to the reservoir (for this reason also called top tank mounted), positioned semi-immersed or completely immersed.

The positioning of the return filters must guarantee in all operating conditions that the fluid drainage takes place in immersed condition; this is to avoid creating foams in the tank that can cause malfunctions or cavitation in the pumps.

For the sizing of the return filters, account must be taken of the presence of accumulators or cylinders that can make the return flow considerably greater than the pump suction flow rate.

Being subject to contained working pressures are manufactured with simple and lightweight construction.

Normally it is possible to extract the filter element without disconnecting the filter from the rest of the system.

Combined filters

They are designed to be applied to systems with two or more circuits. They are commonly used in hydrostatic transmission machines where they have a dual filtration function of the return line and suction line of the hydrostatic transmission pump.

The filter is equipped with a valve that keeps the 0.5 bar pressure inside the filter. A portion of the fluid that returns to the tank is filtered by the return filter element, generally produced with absolute filtration, and returns to the transmission booster pump.

Only excess fluid returns to the tank through the valve.

The internal pressure of the filter and the absolute filtration help to avoid the cavitation phenomenon inside the pump.

Off-line filters

They are generally used in very large systems / plants, placed in a closed circuit independent from the main circuit. They remain in operation regardless of the operation of the main circuit and are crossed by a constant flow rate.

They can also be manufactured in duplex configuration to allow the contaminated section to be maintained even when the unit is in operation without interruption of the work cycle.

Venting filters

During the operation of the plants, the fluid level present in the reservoir changes continuously.

The result of this continuous fluctuation is an exchange of air with the outside environment.

The venting filter function, positioned on the tank, is to filter the air that enters the tank to compensate for fluid level variations.

8 FILTER SIZING PARAMETERS

The choice of the filter system for an hydraulic system is influenced by several factors.

It is necessary to consider the characteristics of the various components present in the plant and their sensitivity to contamination.

It is also necessary to consider all the tasks that the filter will have to do within the plant:

- FLUID PROTECTION FROM CONTAMINATION
- PROTECTION OF OLEODYNAMIC COMPONENTS SENSITIVE TO CONTAMINATION
- PROTECTION OF OLEODYNAMIC PLANTS FROM ENVIRONMENTAL WASTE
- PROTECTION OF OLEODYNAMIC PLANTS FROM CONTAMINATION CAUSED BY COMPONENTS' FAILURES

The advantages of proper positioning and sizing of the filters are

- MORE RELIABILITY OF THE SYSTEM
- LONGER LIFE OF THE FLUID COMPONENTS
- REDUCTION OF STOP TIME
- REDUCTION OF FAILURE CASUALITIES

Each hydraulic filter is described by general features that identify the possibility of use in different applications.

• MAXIMUM WORKING PRESSURE (Pmax)

The maximum working pressure of the filter must be greater than or equal to the pressure of the circuit section in which it will be installed.

PRESSURE DROP (ΔP)

The pressure drop depends on a number of factors, such as the working circuit temperature, the fluid viscosity, the filter element cleaning condition.

WORKING TEMPERATURE (T)

The working temperature deeply affect the choice of materials. Excessively high or low temperatures may adversely affect the strength of the materials or the characteristics of the seals.

• FILTRATION EFFICIENCY (%) / FILTRATION RATIO (β_{x(c)})

Filtration efficiency is the most important parameter to consider when selecting a filter.

When choosing the filtration performances, the needs of the most sensitive components in the system must be considered.

FLUID TYPE

The type of fluid influences the choice of filters in terms of compatibility and viscosity. It is always mandatory to check the filterability.

PLACEMENT IN THE PLANT

The position of the filter in the system conditions the efficiency of all filter performances.

9 APPLICABLE STANDARDS FOR FILTER DEVELOPMENT

In order to obtain unique criteria for development and verification of the filters performance, specific regulations for the filters and filter elements testing have been issued by ISO. These norms describe the target, the methodology, the conditions and the presentation methods for the test results.

ISO 2941

Hydraulic fluid power -- Filter elements -- Verification of collapse/burst pressure rating

This Standard describes the method for testing the collapse / burst resistance of the filter elements.

The test is performed by crossing the contaminated fluid filter element at a predefined flow rate. The progressive clogging of the filter element, determined by contamination, causes an increase in differential pressure.

ISO 2942

Hydraulic fluid power -- Filter elements -- Verification of fabrication integrity and determination of the first bubble point

This Standard describes the method to verify the integrity of the assembled filter elements.

It can be used to verify the quality of the production process or the quality of the materials by verifying the pressure value of the first bubble point.

ISO 2943

Hydraulic fluid power -- Filter elements -- Verification of material compatibility with fluids

This Standard describes the method to verify the compatibility of materials with certain hydraulic fluids.

The test is carried out by keeping the element (the material sample) immersed in the fluid under high or low temperature conditions for a given period of time and verifying the retention of the characteristics.

ISO 3723

Hydraulic fluid power -- Filter elements -- Method for end load test

This Standard describes the method for verifying the axial load resistance of the filter elements.

After performing the procedure described in ISO 2943, the designed axial load is applied to the filter element. To verify the test results, then the test described in ISO 2941 is performed.

ISO 3968

Hydraulic fluid power -- Filters -- Evaluation of differential pressure versus flow characteristics

This Standard describes the method for checking the pressure drop across the filter.

The test is carried out by crossing the filter from a given fluid and by detecting upstream and downstream pressures.

Some of the parameters defined by the Standard are the fluid, the test temperature, the size of the tubes, the position of the pressure detection points.

ISO 16889

Hydraulic fluid power -- Filters -- Multi-pass method for evaluating filtration performance of a filter element

This Standard describes the method to check the filtration characteristics of the filter elements.

The test is performed by constant introduction of contaminant (ISO MTD). The characteristics observed during the test are the filtration efficiency and the dirty holding capacity related to the differential pressure.

18

ISO 23181

Hydraulic fluid power -- Filter elements -- Determination of resistance to flow fatigue using high viscosity fluid

This Standard describes the method for testing the fatigue resistance of the filter elements. The test is carried out by subjecting the filter to continuous flow variations, thus differential pressure, using a high viscosity fluid.

ISO 11170

Hydraulic fluid power -- Sequence of tests for verifying performance characteristics of filter elements

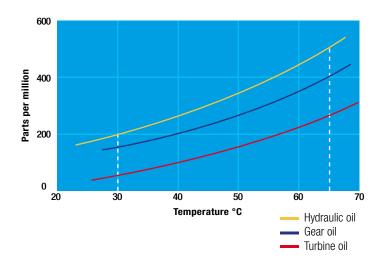
The Standard describes the method for testing the performance of filter elements. The protocol described by the regulations provides the sequence of all the tests described above in order to verify all the working characteristics (mechanical, hydraulic and filtration).

ISO 10771-1

Hydraulic fluid power -- Fatigue pressure testing of metal pressure-containing envelopes -- Test method

This Standard describes the method to check the resistance of the hydraulic components with pulsing pressure.

It can be applied to all metal components (excluding tubes) subject to cyclic pressure used in the hydraulic field.

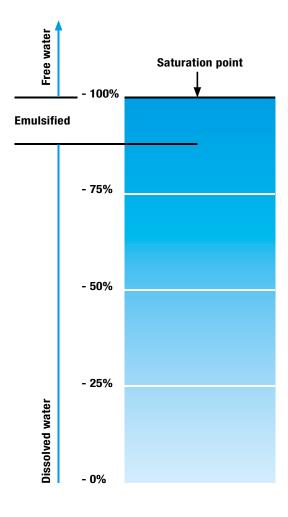

(10) WATER IN HYDRAULIC AND LUBRICATING FLUIDS

Water Content

In mineral oils and non aqueous resistant fluids water is undesirable. Mineral oil usually has a water content of 50-300 ppm (@40°C) which it can support without adverse consequences.

Once the water content exceeds about 300ppm the oil starts to appear hazy. Above this level there is a danger of free water accumulating in the system in areas of low flow. This can lead to corrosion and accelerated wear.

Similarly, fire resistant fluids have a natural water which may be different to mineral oil.


Saturation Levels

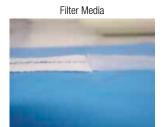
Since the effects of free (also emulsified) water is more harmful than those of dissolved water, water levels should remain well below the saturation point.

However, even water in solution can cause damage and therefore every reasonable effort should be made to keep saturation levels as low as possible. There is no such thing as too little water. As a guideline, we recommend maintaining saturation levels below 50% in all equipment.

TYPICAL WATER SATURATION LEVEL FOR NEW OILS Examples:

Hydraulic oil @ 30° C = 200 ppm = 100% saturation Hydraulic oil @ 65° C = 500 ppm = 100% saturation

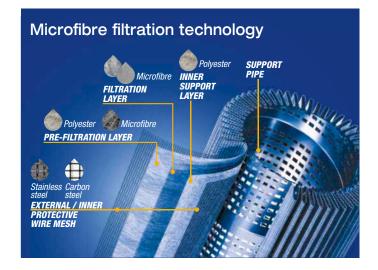
Water absorber


Water is present everywhere, during storage, handling and servicing.

MP Filtri filter elements feature an absorbent media which protects hydraulic systems from both particulate and water contamination.

MP Filtri's filter element technology is available with inorganic microfiber media with a filtration rating 25 μ m (therefore identified with media designation WA025), providing absolute filtration of solid particles to $\mathcal{B}_{x(c)} = 1000$.

Absorbent media is made by water absorbent fibres which increase in size during the absorption process.


Free water is thus bonded to the filter media and completely removed from the system (it cannot even be squeezed out).

Fabric that absorbs water

The Filter Media has absorbed water

By removing water from your fluid power system, you can prevent such key problems as:

- corrosion (metal etching)
- loss of lubricant power
- accelerated abrasive wear in hydraulic components
- valve-locking
- bearing fatigue
- viscosity variance (reduction in lubricating properties)
- additive precipitation and oil oxidation
- increase in acidity level
- increased electrical conductivity (loss of dielectric strength)
- slow/weak response of control systems

Product availability:

LOW & MEDIUM PRESSURE FILTERS - LMP Series

LMP 210 LMP 900 LMP 211 LMP 901 LMP 400 LMP 902 LMP 401 LMP 903 LMP 430 LMP 950

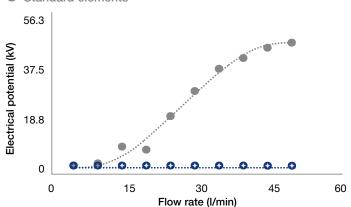
(11) THE ANTI-STATIC FILTERS

zerospark+®

zerospark is a specialist solution designed to solve the problem of electrostatic discharge inside hydraulic filters. Caused by the electrical charge build-up due to the passage of oil through the filters, this can result in damage to filter elements, oils and circuit components. It can even cause fire hazards in environments where flammable materials are present.

THE TRIBOELECTRIC EFFECT

The body with the most electronegativity strips electrons from the other, generating a build-up of a net negative charge on itself. The other body is charged by the same amount but with the opposite sign, giving rise to very high potential differences. These, if not dissipated, can give rise to electrostatic discharges.


balancing

DISSIPATIVE FILTER ELEMENTS

To solve the problem of charge build-up in filters, MP Filtri has developed an innovative solution. By replacing certain insulating components with conductive zerospark versions, the charges on the media are free to move towards the head and are thus dissipated to the ground.

Dissipative elements

Standard elements

Under standard working conditions, the potential goes from tens of kV to zero, clearly showing the effectiveness of our dissipative filters.

The following table summarises some examples of test results at the same flow rate and temperature for elements of the same size but made of different materials.

Filter element	Electrical potential (kV)	Current (µA)
Standard glass microfibre	11	-6.0
Dissipative glass microfibr	e 0	-9.0
Standard cellulose	6	-1.3
Dissipative cellulose	0	-2.1
Other glass microfibre	9-15	-7.0
Other glass microfibre	3-8	-16.0

When using a synthetic oil instead of mineral oil, the values and sign of the two electrical quantities may vary.

	Mineral oil	Synthetic oil			
Filter element	Electrical potential (kV)				
Standard glass microfibre	+11	+30			
Dissipative glass microfibre	0	~0.0			
Standard cellulose	+6	-43			
Dissipative cellulose	0	~0.0			

FILTER SIZING

INDEX

	raye
CALCULATION	23
CORRECTIVE FACTOR	24

22

THE CORRECT FILTER SIZING HAS TO BE BASED ON THE TOTAL PRESSURE DROP DEPENDING BY THE APPLICATION.

FOR EXAMPLE, THE MAXIMUM TOTAL PRESSURE DROP ALLOWED BY A NEW AND CLEAN RETURN FILTER HAVE TO BE IN THE RANGE 0.4 - 0.6 bar / 5.80 - 8.70 psi.

The pressure drop calculation is performed by adding together the value of the housing with the value of the filter element. The pressure drop Δpc of the housing is proportional to the fluid density (kg/dm³/lb/ft³).

The filter element pressure drop Δpe is proportional to its viscosity (mm²/s / SUS), the corrective factor Y have to be used in case of an oil viscosity different than 30 mm²/s (cSt) / 150 SUS.

Sizing data for single filter element, head at top

 Δpc = Filter housing pressure drop [bar / psi]

 Δpe = Filter element pressure drop [bar / psi]

 $\mathbf{Y} = \text{Corrective factor Y}$ (see correspondent table), depending on the filter type, on the filter element size, on the filter element length and on the filter media

Q = flow rate (I/min - gpm)

V1 reference oil viscosity = 30 mm²/s (cSt) /150 SUS

V2 = operating oil viscosity in mm²/s (cSt) / SUS

Filter element pressure drop calculation with an oil viscosity different than 30 mm²/s (cSt) / 150 SUS

International system:

 $\Delta pe = Y : 1000 \times Q \times (V2:V1)$

Impe rial system:

 $\Delta pe = Y : 17.2 \times Q \times (V2:V1)$

 Δp Tot. = $\Delta pc + \Delta pe$

Verification formula

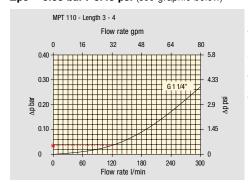
 Δp Tot. $\leq \Delta p$ max allowed

Maximum total pressure drop (Δp max) allowed by a new and clean filter

Application I	Range:[bar]	[psi]	
Suction filters	0.08 - 0.10 bar	1.16 - 1.45 psi	
Return filters	0.4 - 0.6 bar	5.80 - 8.70 psi	
Return - Suction file	ters (*) 0.8 - 1.0 bar	11.60 - 14.50 p	si
	0.4 - 0.6 bar	5.80 - 8.70 psi	return lines
Low & Medium	0.3 - 0.5 bar	4.35 - 7.25 psi	lubrication lines
Pressure filters	0.3 - 0.4 bar	4.35 - 5.80 psi	off-line in power systems
1 1033ui C IIItora	0.1 - 0.3 bar	1.45 - 4.35 psi	off-line in test benches
	0.4 - 0.6 bar	5.80 - 8.7 psi	over-boost
High Pressure filter	s 0.8 - 1.5 bar	11.60 - 21.75 p	si
Stainless Steel filte	rs 0.8 - 1.5 bar	11.60 - 21.75 p	si

(*) The suction flow rate should not exceed 30% of the return flow rate

Generic filter calculation example


Application data:
Tank top return filter
Pressure Pmax = 10 bar
Flow rate Q = 120 l/min
Viscosity V2 = 46 mm²/s (cSt)
Oil density = 0.86 kg/dm³

Required filtration efficiency = $25 \mu m$ with absolute filtration

With bypass valve and G 1 1/4" inlet connection

Calculation:

 $\Delta pc = 0.03 \text{ bar / } 0.43 \text{ psi (see graphic below)}$

Filter housings Δp pressure drop. The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

 $\Delta pe = (2.00: 1000) \times 120 \times (46: 30) = 0.37 \text{ bar}$ $\Delta pe = (2.00: 17.2) \times 32 \times (216: 150) = 5.36 \text{ psi}$

Filter element			Absolute filtration H Series					Nominal filtration N Series		
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90	
Return filte	rs									
		74.00	50.08	20.00	16.00	9.00	6.43	5.51	4.40	
MF 020	2	29.20	24.12	8.00	7.22	5.00	3.33	2.85	2.00	
020	3	22.00	19.00	6.56	5.33	4.33	1.68	1.44	1.30	
MF 030 MFX 030	1	74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40	
	1	28.20	24.40	8.67	8.17	6.88	4.62	3.96	1.25	
MF 100	2	17.33	12.50	6.86	5.70	4.00	3.05	2.47	1.10	
MFX 100	3	10.25	9.00	3.65	3.33	2.50	1.63	1.32	0.96	
	4	6.10	5.40	2.30	2.20	2.00	1.19	0.96	0.82	

 Δp Tot. = 0.03 + 0.37 = 0.4 bar Δp Tot. = 0.43 + 5.36 = 5.79 psi

The selection is correct because the total pressure drop value is inside the admissible range for top tank return filters.

In case the allowed max total pressure drop is not verified, it is necessary to repeat the calculation changing the filter length/size.

FILTER SIZING Corrective factor

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity $30 \text{ mm}^2/\text{s}$

Return filters

Filter elemen			Abso	Nominal filtration N Series					
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
MF 020	1 2 3	74.00 29.20 22.00	50.08 24.12 19.00	20.00 8.00 6.56	16.00 7.22 5.33	9.00 5.00 4.33	6.43 3.33 1.68	5.51 2.85 1.44	4.40 2.00 1.30
MF 030 MFX 030		74.00	50.08	20.00	16.00	9.00	6.43	5.51	3.40
MF 100 MFX 100	1 2 3 4	28.20 17.33 10.25 6.10	24.40 12.50 9.00 5.40	8.67 6.86 3.65 2.30	8.17 5.70 3.33 2.20	6.88 4.00 2.50 2.00	4.62 3.05 1.63 1.19	3.96 2.47 1.32 0.96	1.25 1.10 0.96 0.82
MF 180 MFX 180	1 2	3.67 1.69	3.05 1.37	1.64 0.68	1.56 0.54	1.24 0.51	1.18 0.43	1.06 0.39	0.26 0.12
MF 190 MFX 190	12	1.69	1.37	0.60	0.49	0.44	0.35	0.31	0.11
MF 400 MFX 400	1 2 3	3.20 2.00 1.90	2.75 1.87 1.60	1.39 0.88 0.63	1.33 0.85 0.51	1.06 0.55 0.49	0.96 0.49 0.39	0.87 0.45 0.35	0.22 0.13 0.11
MF 750 MFX 750	11	1.08	0.84	0.49	0.36	0.26	0.21	0.19	0.06
MLX 250	12	3.00	3.04	1.46	1.25	1.17	-	-	M25 0.20 M25
MLX 660	12	1.29	1.26	0.52	0.44	0.38	-	-	0.10
CU 025		78.00	48.00	28.00	24.00	9.33	9.33	8.51	1.25
CU 040		25.88	20.88	10.44	10.00	3.78	3.78	3.30	1.25
CU 100		15.20	14.53	5.14	4.95	2.00	2.00	0.17	1.10
CU 250		3.25	2.55	1.55	1.35	0.71	0.71	0.59	0.25
CU 630		1.96	1.68	0.85	0.72	0.42	0.42	0.36	0.09
CU 850		1.06	0.84	0.42	0.33	0.17	0.17	0.13	0.04
DH 250	2	3.61 2.10	4.08 1.70	1.81 1.14	1.71 0.77	1.35 0.53	-	-	M25 0.55 0.60
MR 100	1 2 3 4 5	19.00 11.70 7.80 5.50 4.20	17.00 10.80 6.87 4.97 3.84	6.90 4.40 3.70 2.60 2.36	6.30 4.30 3.10 2.40 2.15	4.60 3.00 2.70 2.18 1.90	2.94 2.94 2.14 1.72 1.60	2.52 2.52 1.84 1.47 1.37	1.60 1.37 1.34 1.34 1.34
MR 250	1 2 3 4	5.35 4.00 2.60 1.84	4.85 3.28 2.20 1.56	2.32 1.44 1.08 0.68	1.92 1.10 1.00 0.56	1.50 1.07 0.86 0.44	1.38 0.96 0.77 0.37	1.20 0.83 0.64 0.23	0.15 0.13 0.12 0.11
MR 630	1 2 3 4 5	3.10 2.06 1.48 1.30 0.74	2.48 1.92 1.30 1.20 0.65	1.32 0.82 0.60 0.48 0.30	1.14 0.76 0.56 0.40 0.28	0.92 0.38 0.26 0.25 0.13	0.83 0.33 0.22 0.21 0.10	0.73 0.27 0.17 0.16 0.08	0.09 0.08 0.08 0.08 0.04
MR 850	1 2 3 4	0.60 0.37 0.27 0.23	0.43 0.26 0.18 0.16	0.34 0.23 0.17 0.13	0.25 0.21 0.17 0.12	0.13 0.11 0.05 0.04	0.12 0.08 0.04 0.03	0.09 0.07 0.04 0.03	0.03 0.03 0.02 0.02

Return / Suction filters

Filter element	Absolute filtration							
Туре	A10	A16	A25					
RSX 116 2	5.12	4.33	3.85					
	2.22	1.87	1.22					
RSX 165 1 2 8 3	2.06	1.75	1.46					
	1.24	1.05	0.96					
	0.94	0.86	0.61					

Filter eleme	nt			A		filtratio eries	on		
Туре		A03	A06	A10	A16	A25	P10	P25	M25 M60 M90
CU 110	1 2 3 4	16.25 12.62 8.57 5.76	15.16 10.44 7.95 4.05	8.75 6.11 5.07 2.80	8.14 6.02 4.07 2.36	5.87 4.16 2.40 1.14	2.86 1.60 1.24 0.91	2.65 1.49 1.15 0.85	0.14 0.12 0.11 0.05

Low & Medium pressure filters

Filte elem			Abso N	lute filt -W Serie	ration es		Nomi	i nal filtr N Series	ation
Туре		A03	A06	A10	A16	A25	P10	P25	M25
CU 11	0 2 3 4	16.25 12.62 8.57 5.76	15.16 10.44 7.95 4.05	8.75 6.11 5.07 2.80	8.14 6.02 4.07 2.36	5.87 4.15 2.40 1.14	2.86 1.60 1.24 0.91	2.65 1.49 1.15 0.85	0.14 0.12 0.11 0.05
CU 21	1	5.30 3.44 2.40	4.80 2.95 1.70	2.00 1.24 0.94	1.66 1.09 0.84	1.32 0.70 0.54	0.56 0.42 0.33	0.43 0.35 0.23	0.12 0.09 0.05
DN	016 025 040	7.95 5.00 3.13	7.20 4.53 2.66	3.00 1.89 1.12	2.49 1.57 0.98	1.98 1.25 0.63	0.84 0.53 0.38	0.65 0.41 0.32	0.18 0.11 0.08
CU 40	2 3 4 5 6	3.13 2.15 1.60 1.00 0.82	2.55 1.70 1.28 0.83 0.58	1.46 0.94 0.71 0.47 0.30	1.22 0.78 0.61 0.34 0.27	0.78 0.50 0.40 0.20 0.17	0.75 0.40 0.34 0.24 0.22	0.64 0.34 0.27 0.19 0.18	0.19 0.10 0.08 0.06 0.05
CU 90	0 1	0.86	0.63	0.32	0.30	0.21	-	-	0.05
CU 95	0 3	1.03 0.44	0.80	0.59 0.27	0.40 0.18	0.26 0.15		-	0.05
MR 63	80 7	0.88	0.78	0.36	0.34	0.16	0.12	0.96	0.47

Corrective factor Y to be used for the filter element pressure drop calculation. The values depend to the filter size and length and to the filter media. Reference oil viscosity $30 \text{ mm}^2/\text{s}$

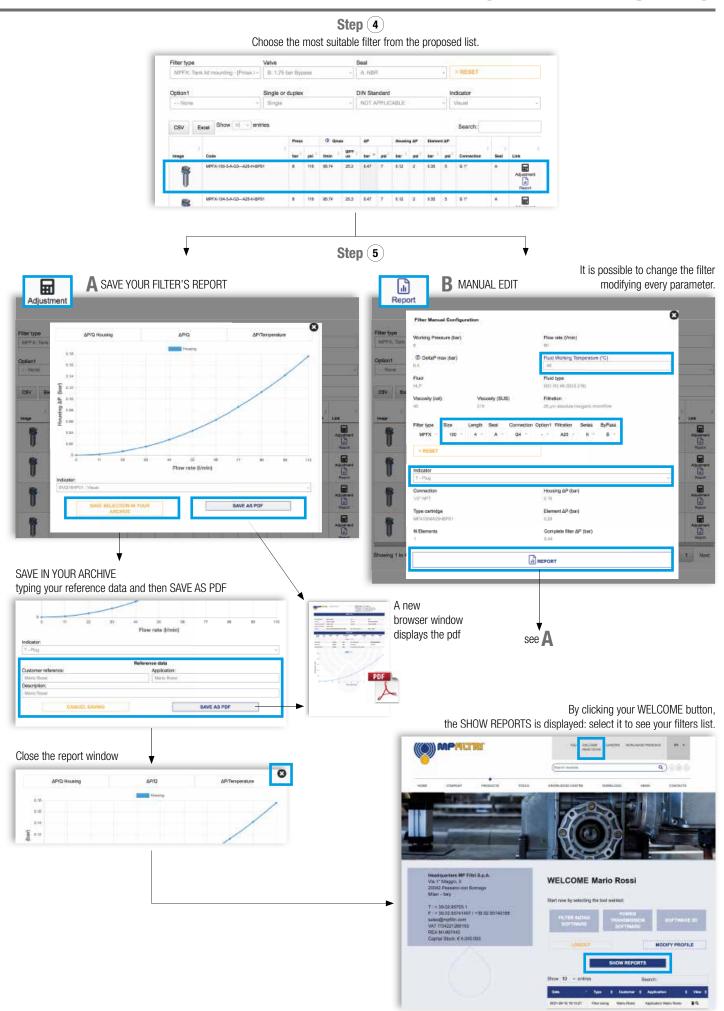
High pressure filters

Filter eleme	nt			olute filtra V - R Serie:			Nominal filtration N Series
Туре		A03	A06	A10	A16	A25	M25
	1	332.71	250.07	184.32	152.36	128.36	-
IID 044	2	220.28	165.56	74.08	59.13	37.05	-
HP 011	3	123.24	92.68	41.48	33.08	20.72	-
	4	77.76	58.52	28.37	22.67	16.17	-
	2	70.66	53.20	25.77	20.57	14.67	4.90
HP 039	3	36.57	32.28	18.00	13.38	8.00	2.90
	4	26.57	23.27	12.46	8.80	5.58	2.20
	1	31.75	30.30	13.16	12.3	7.29	1.60
	2	24.25	21.26	11.70	9.09	4.90	1.40
HP 050	3	17.37	16.25	8.90	7.18	3.63	1.25
	4	12.12	10.75	6.10	5.75	3.08	1.07
	5	7.00	6.56	3.60	3.10	2.25	0.80
	1	58.50	43.46	23.16	19.66	10.71	1.28
HP 065	2	42.60	25.64	16.22	13.88	7.32	1.11
	3	20.50	15.88	8.18	6.81	3.91	0.58
	1	20.33	18.80	9.71	8.66	4.78	2.78
HP 135	2	11.14	10.16	6.60	6.38	2.22	1.11
	3	6.48	6.33	3.38	3.16	2.14	1.01
	1	17.53	15.91	7.48	6.96	5.94	1.07
HP 150	2	8.60	8.37	3.54	3.38	3.15	0.58
	3	6.53	5.90	2.93	2.79	2.12	0.49
	1	10.88	9.73	5.02	3.73	2.54	1.04
UD 220	2	4.40	3.83	1.75	1.48	0.88	0.71
HP 320	3	2.75	2.11	1.05	0.87	0.77	0.61
	4	2.12	1.77	0.98	0.78	0.55	0.47
	1	4.44	3.67	2.30	2.10	1.65	0.15
	2	3.37	2.77	1.78	1.68	1.24	0.10
HP 500	3	2.22	1.98	1.11	1.09	0.75	0.08
	4	1.81	1.33	0.93	0.86	0.68	0.05
	5	1.33	1.15	0.77	0.68	0.48	0.04
Filter eleme	nt_				l ute filtrati N Series	on	
Туре		A03	A06	A10	A16	A25	M25
	1	3 65	2 95	2.80	1.80	0.90	0.38

elemer	nt				N Series	UII		
Туре		A03	A06	A10	A16	A25	M25	
	1	3.65	2.95	2.80	1.80	0.90	0.38	
HF 325	2	2.03	1.73	1.61	1.35	0.85	0.36	
	3	1.84	1.42	1.32	1.22	0.80	0.35	

Suction filters

Filter element				filtration eries		
Туре	P10	P25	M25	M60	M90	M250
SF 250	0.65	0.20	0.10	0.08	0.05	0.03
SF 503	_	-	0.17	0.11	0.11	0.11
SF 504	_	_	0.11	0.08	0.08	0.08
SF 505	-	-	0.23	0.18	0.18	0.18
SF 510	_	_	0.18	0.14	0.14	0.14
SF 535	_	-	0.08	0.05	0.05	0.05
SF 540	_	_	0.05	0.04	0.04	0.04


Stainless steel high pressure filters and Filters for potentially explosive atmosphere

		P				
Filter element			Abs	olute filtra N Series	tion	
Туре		A03	A06	A10	A16	A25
IID 044	1 2	332.71 220.28	250.07 165.56	184.32 74.08	152.36 59.13	128.36 37.05
HP 011	3	123.24	92.68	41.48	33.08	20.72
	4	77.76	58.52	28.37	22.67	16.17
	2	70.66	53.20	25.77	20.57	14.67
HP 039	3	36.57	32.28	18.00	13.38	8.00
	4	26.57	23.27	12.46	8.80	5.58
	1	31.75	30.30	13.16	12.3	7.29
UD OFO	2	24.25	21.26	11.70	9.09	4.90
HP 050 HPX 050	3	17.37	16.25	8.90	7.18	3.63
HEY 000	4	12.12	10.75	6.10	5.75	3.08
	5	7.00	6.56	3.60	3.10	2.25
	1	20.33	18.80	9.71	8.66	4.78
HP 135	2	11.14	10.16	6.60	6.38	2.22
	3	6.48	6.33	3.38	3.16	2.14

Filter elemen	t			olute filtra H - U Series		
Туре		A03	A06	A10	A16	A25
	1	424.58	319.74	235.17	194.44	163.78
HP 011	2	281.06	211.25	94.53	75.45	47.26
	3	130.14	97.50	43.63	34.82	21.81
	4	109.39	82.25	36.79	29.37	18.40
	2	73.00	57.00	28.00	24.00	17.20
HP 039	3	40.90	36.33	21.88	18.80	11.20
	4	31.50	28.22	17.22	9.30	6.70
	1	47.33	34.25	21.50	20.50	14.71
UD 050	2	29.10	25.95	14.04	10.90	5.88
HP 050	3	20.85	19.50	10.68	8.61	4.36
HPX 050	4	14.55	12.90	7.32	6.90	3.69
	5	9.86	9.34	6.40	4.80	2.50
-	l a	00.40	05.00	40.00	10.17	F 00
	1	29.16	25.33	13.00	12.47	5.92
HP 135	2	14.28	11.04	7.86	7.60	4.44
	3	8.96	7.46	4.89	4.16	3.07

YPICAL FILTER SIZING Selection Software

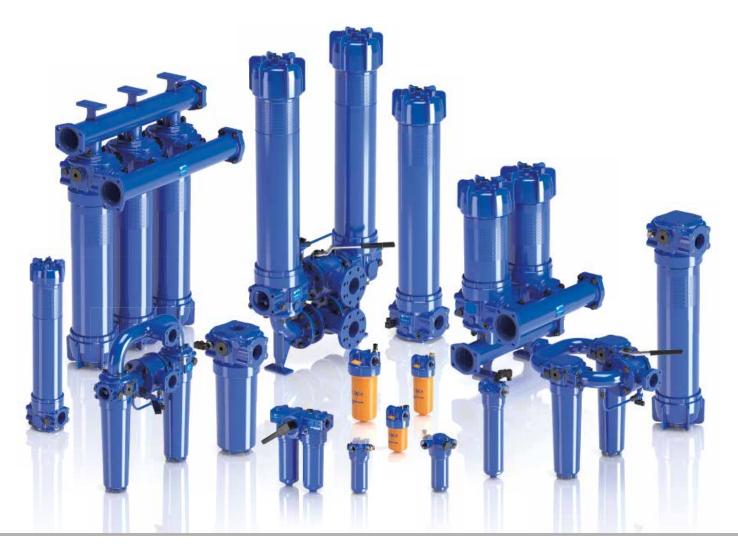
LMP - low and medium pressure filters are used as process filters to protect pumps, pressure reducers and hydraulic circuits from damage due to oil contamination as per ISO 4406.

LMP series is available in 5 different sizes: 100, 200, 400, 900 and 950 and a wide range of versions.

LMP filters are available with several working pressures suitable for all hydraulic circuits as:

- return filters in external tank mounting construction for medium and high flow rates in single and duplex versions
- in-line filters for low and medium pressures for off-line applications
- in-line process filters for medium pressures, for example, for forced lubrication applications, in single or duplex versions
- in-line filters for medium pressures for filtering hydraulic boost circuits
- in-line filters as high holding capacity filters on test beds

LMP filters are thus specifically designed to be suitable for a wide range of application: from steel plants to mobile equipments, from test benches to naval application, providing the right solution for filtering requirements in all sectors.


LMP filters are available in single, manifold and duplex versions (LMD series).

For the proper corrective factor Y see chapter at page 24

Low & Medium Pressure filters

LFEX ELI X IR°	page 308
LMP 110 - 120 - 123 MULTIPORT	319
LMP 210 - 211	335
LMP 400 - 401 & 430 - 431	345
LMP 950 - 951	357
LMP 952 - 953 - 954	365
LMD 211	377
LMD 400 - 401 & 431	385

LMD 951	page	401
Filter element according to DIN 24550		409
LDP - LDD		411
LMP 900 - 901		421
LMP 902 - 903		429
ACCESSORIES		438
INDICATORS		686

Protect the performance of your system with MYclean. Quality and efficiency are fundamental for MP Filtri: this exclusive new filter element possesses polygon shape geometry and specific seal that ensures only original spare parts can be used - ensuring correct operation and higher system reliability.

With exclusive filter element you are sure that only MP Filtri filter elements can be used, ensuring the best cleaning level of the oil

Safety of constant quality protection & reliability

due to the use of originals filter elements.

- Canadian Patent n° 2,937,258
- European Patent nº 16181725.9
- US Patent n° 15/224,337

LFEX series

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 300 l/min

Description

Low & Medium Pressure filters

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 300 l/min

LFEX is a range of low pressure filter for protection of sensitive components in low pressure hydraulic systems.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/4" and SAE connections up to 1 5/8", for a maximum flow rate of 300 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid
- Bypass valve, to relieve excessive pressure drop across the filter media
- NEW Visual and electrical differential clogging indicators, capable to hold the overall dimension
- MYclean interface connection for the filter element, to protect the product against non-original spare parts
- External protective wrap, to optimize the flow through the element and to save the element efficiency against non-proper handling

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

Technical data

Filter housing materials

- Head: Aluminium
- Bypass valve: Polyamide Steel
- Bowl: Polyamide

Bypass valve

Opening pressure 350 kPa (3.5 bar) ±10%

Δp element type

- Microfibre filter elements series N: 8 bar
- Fluid flow through the filter element from OUT to IN

Seals

Standard NBR series A

Temperature

From -25 °C to +110 °C

Note

LFEX filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]
LFEX 060	1.00	0.60
LFEX 080	1.15	0.80
LFEX 110	1.90	1.60
I FFX 160	2.10	2.00

Hydraulic symbols

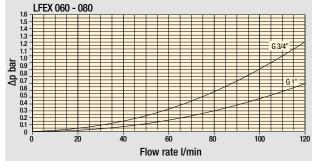
Filter series	Style S	Style B
LFEX 060	•	•
LFEX 080	•	•
LFEX 110	•	•
LFEX 160	•	•
	OUT 〒	OUT 〒
	D.I.	D.I.

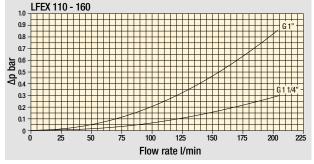
FILTER ASSEMBLY SIZING Flow rates [I/min]

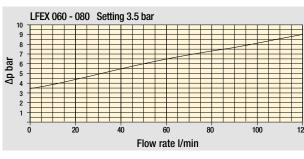
										riow rates	[1/111111]
				Filter ele	ment desiç	gn - N Seri	es				
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 060	45	47	65	66	68	84	84	86	67	73	
LFEX 080	58	59	73	72	76	86	87	88	79	82	
Connections of filter und	er test G 3/4"										
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 060	49	51	75	77	80	104	105	107	74	95	
LFEX 080	67	67	86	87	92	107	108	110	96	112	
Connections of filter und	er test G 1"										
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LFEX 110	107	115	182	195	216	295	298	300	232	242	
LFEX 160	146	150	210	212	237	300	303	304	254	262	
Connections of filter und	or toot C 1 1/1"	,									

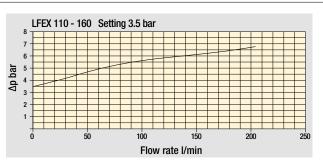
Connections of filter under test G 1 1/4'

Maximum flow rate for a complete delivery filter with a pressure drop $\Delta p = 0.7$ bar.

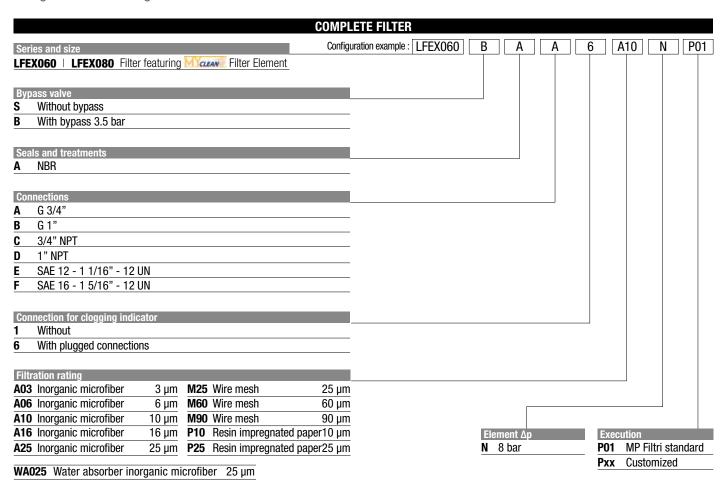

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

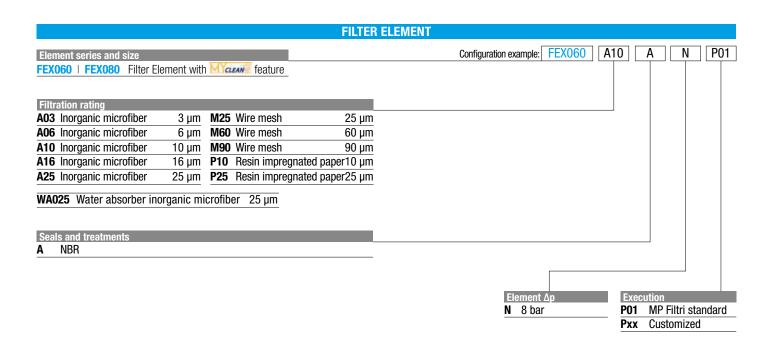

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


Please, contact our Sales Department for further additional information.

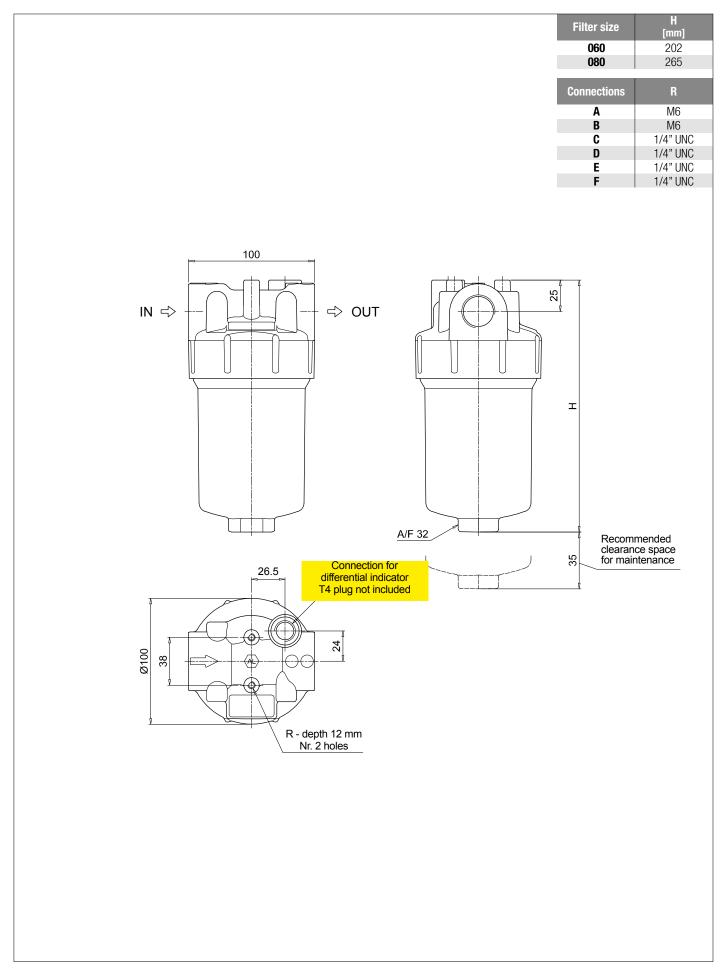

Pressure drop

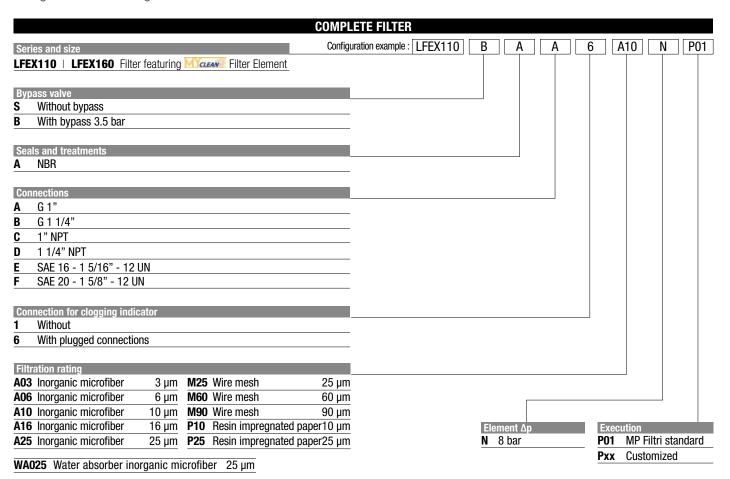
Filter housings Δp pressure drop

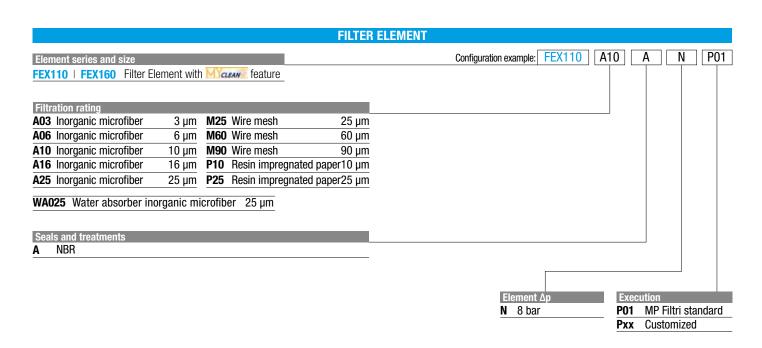


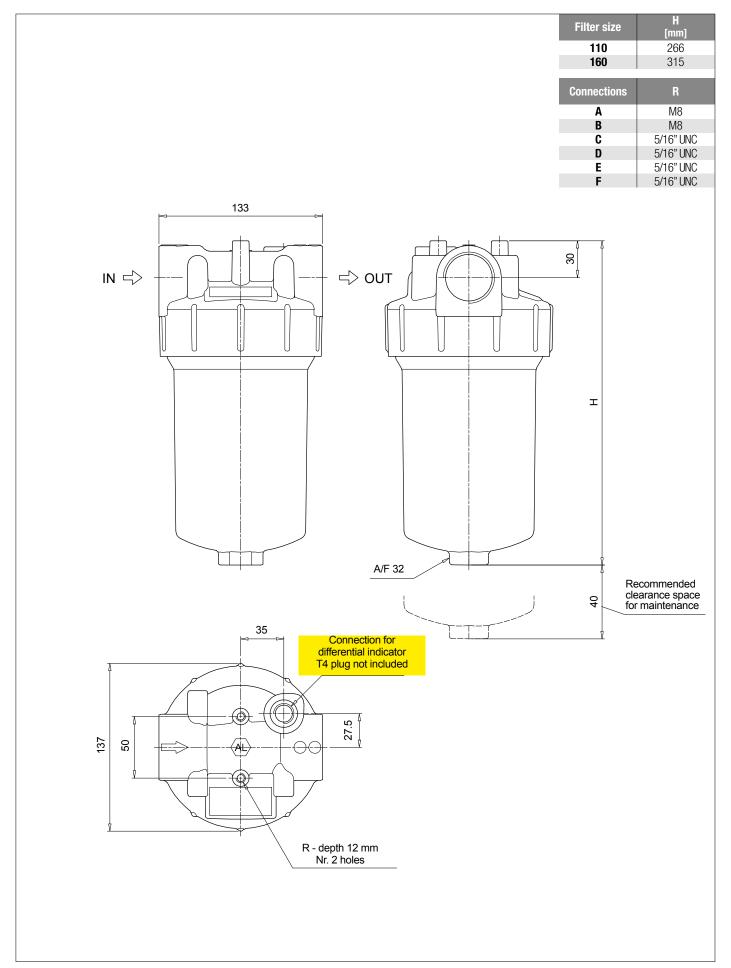


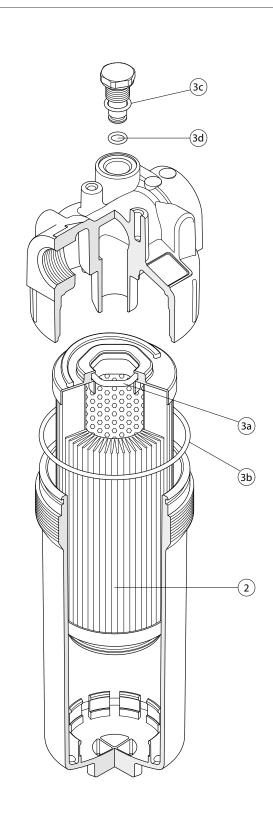
Bypass valve pressure drop


The curves are plotted using mineral oil with density of 0.86 kg/dm^3 in compliance with ISO 3968. Δp varies proportionally with density.


Designation & Ordering code

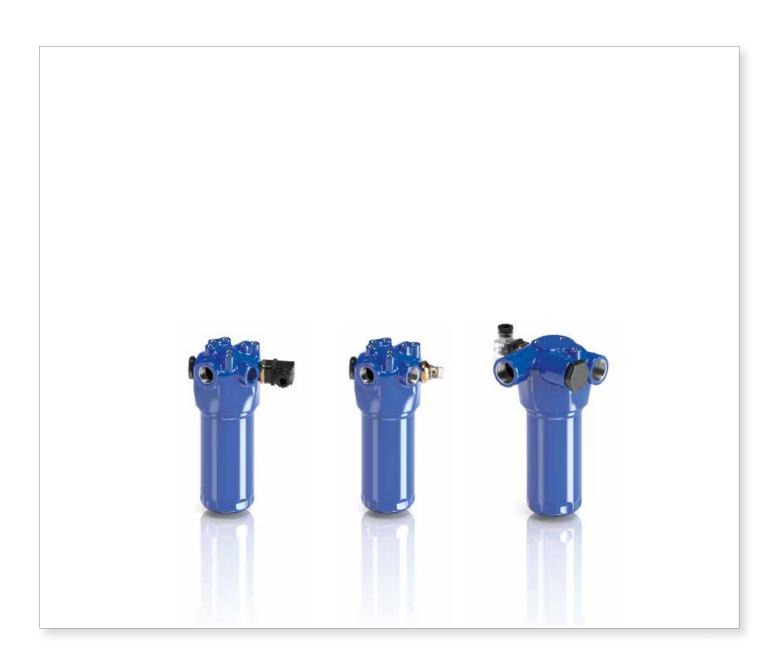



	CLOGGI	NG INDICATORS	See page 686
DES	Electrical differential indicator		
DVS	Visual differential indicator		
		PLUGS	Soo page 706
T4	Differential indicator plug	rLuus	See page 706



		CLOGGING INDICATORS	See page 686
DES	Electrical differential indicator		
DVS	Visual differential indicator		
		DI HOO	0 700
		PLUGS	See page 706
T4	Differential indicator plug		

Order number for spare parts


	Q.ty: 1 pc.	Q.ty: 1 pc.	Q.ty: 1 pc.
Item:	2	3 (3a ÷ 3d)	4
Filter series	Filter element	Seal Kit code number NBR	Indicator connection plug NBR
LFEX 060-080	See order table	02050771	T4A
LFEX 110-160	table	02050772	ITA

LMP 110-120-123 series

Maximum working pressure up to 8 MPa (80 bar) - Flow rate up to 175 l/min

Description

Low & Medium Pressure filters

Maximum working pressure up to 8 MPa (80 bar) Flow rate up to 175 I/min

LMP110 is a range of versatile low pressure filter for transmission, protection of sensitive components in low pressure hydraulic systems and filtration of the coolant into the machine tools.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- -Female threaded connections up to 1", for a maximum return flow rate of 175 I/min
- Fine filtration rating, to get a good cleanliness level into the system
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical and electronic differential clogging indicators
- Multiport and multifunction schemes, to meet any type of application.
- LMP112: 3/4" additional input port
- LMP116: 3/4" additional output port
- LMP118: 3/4" bypass port, to send the bypass flow to the reservoir instead of the system
- LMP119: 3/4" relief port, to relief the input pressure in the filter, protecting the components downstream the filter against back pressure caused by the pressure drop (cold starts)
- LMP120: connections placed in the same side
- LMP122: connections placed in the same side and 1" additional output port
- LMP123: 2 and 3 bar integrated relief valve

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

Technical data

Filter housing materials

- Head: Aluminium
- Housing: Cataphoresis Painted steel
- Bypass valve: Brass Aluminium

Pressure

- Test pressure: 12 MPa (120 bar)
- Burst pressure: LMP 110: 29 MPa (290 bar) LMP 120/130: 38 MPa (380 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 8 MPa (80 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N W: 20 bar
- Wire mesh filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Note

LMP MULTIPORT filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]				Volumes [dm³]				
	Length 1				Length 1			4	
LMP 110-112-116-118-119	1.60	1.80	2.10	2.60	0.75	0.81	1.11	1.53	
LMP 120-122	1.90	2.10	2.40	2.90	0.75	0.81	1.11	1.53	
LMP 123	1.70	1.90	2.20	2.70	0.75	0.81	1.11	1.53	

LMP 110-120-123

FILTER ASSEMBLY SIZING Flow rates [I/min]

				Fil	ter element d	esign - N Ser	ies		
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25
	1	40	42	65	69	85	163	117	120
.MP 110	2	49	57	83	83	101	163	136	138
INIT I IU	3	66	70	92	102	124	164	142	144
	4	86	102	118	124	144	165	148	149
	1	36	38	55	57	67	105	84	86
MP 112	2	44	49	66	66	76	105	93	94
	3	56	58	71	77	87	106	96	97
	4	67	77	85	88	97	106	99	99
	1	36	38	54	56	64	96	79	80
MP 116	2	43	49	63	64	72	96	86	87
.WIF 110	3	54	57	68	73	82	96	88	89
	4	65	73	79	82	89	96	91	91
	1	40	42	65	69	85	163	117	120
.MP 118	2	49	57	83	83	101	163	136	138
IVIF 110	3	66	70	92	102	124	164	142	144
	4	86	102	118	124	144	165	148	149
	1	40	43	66	70	87	172	121	125
MP 120	2	50	58	85	85	104	172	142	144
LIVIF 12U	3	67	71	94	105	129	173	149	151
	4	88	106	122	129	151	174	155	157
	1	39	42	64	67	81	146	109	111
MP 122	2	49	56	80	80	96	146	124	126
LIVIT I ZZ	3	65	68	88	96	114	146	129	130
	4	82	97	110	115	131	147	134	135

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

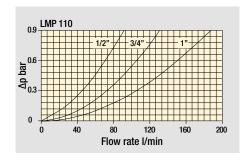
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

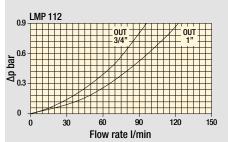
For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

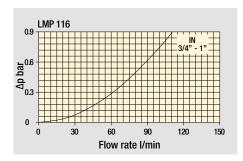
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

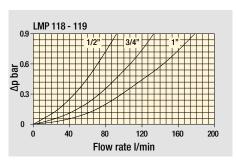
			Filter element design - N Series										
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25				
	1	35	37	50	52	59	83	70	71				
LMP 123	2	41	46	58	58	65	83	76	76				
LIVIT 123	3	51	53	62	65	72	83	77	78				
	4	59	65	70	72	78	83	79	79				

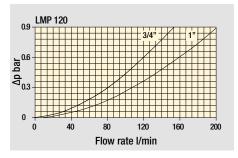
Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 2.7$ bar.

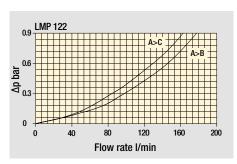

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

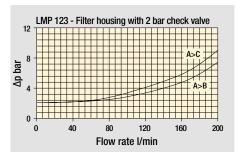

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

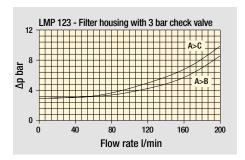

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

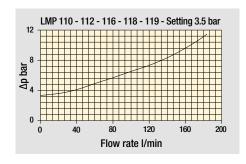

Pressure drop

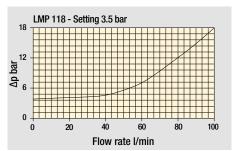

Filter housings Δp pressure drop

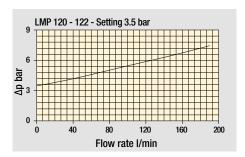




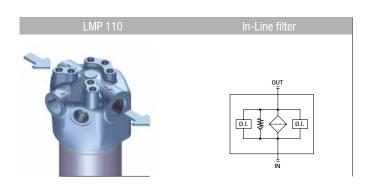


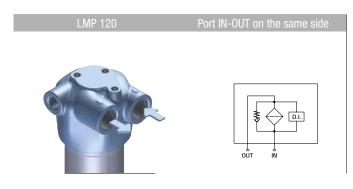


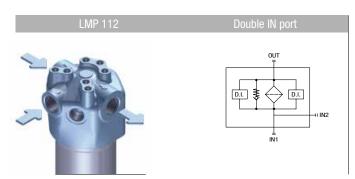


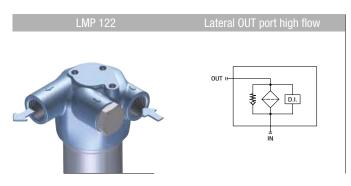


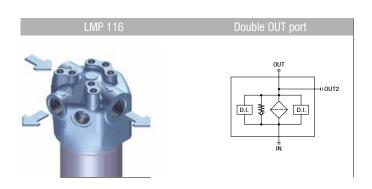
Bypass valve pressure drop

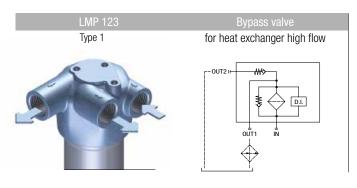


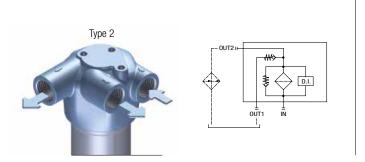


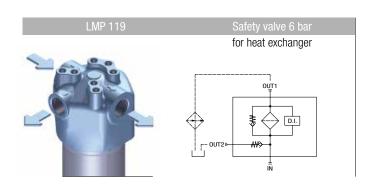

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

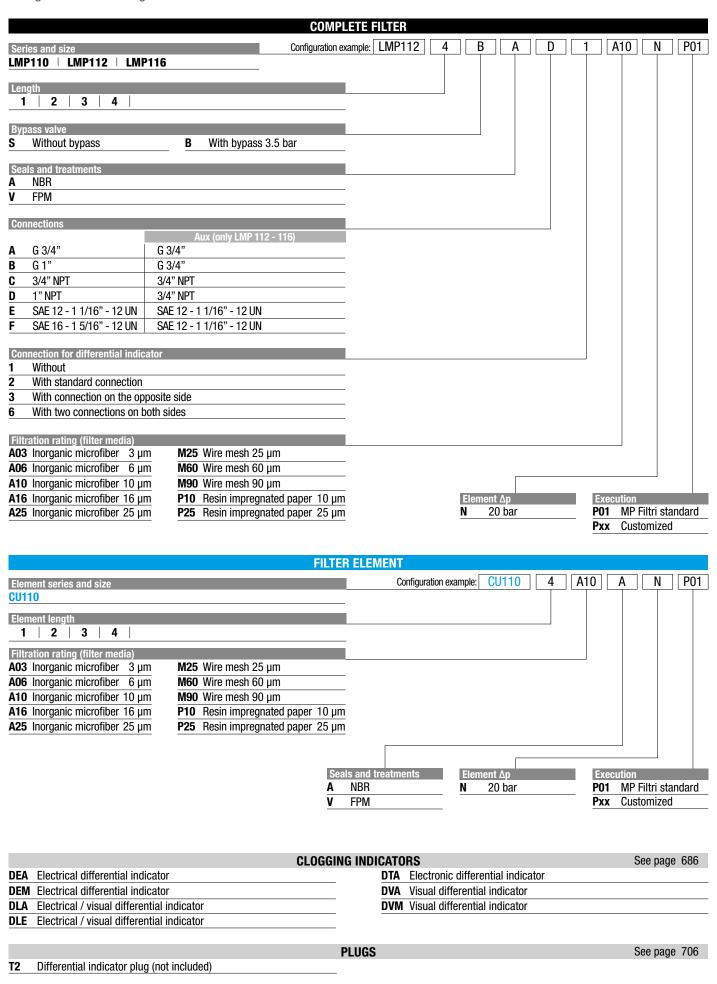

LMP 110-120-123

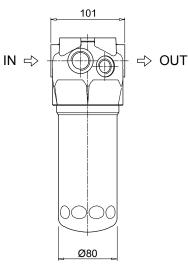

Hydraulic symbols - Multiport styles

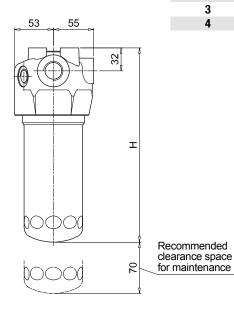




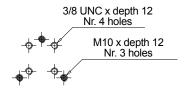




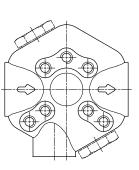

MULTIPORT


Designation & Ordering code

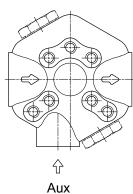
Filter	Н
length	[mm]
1	182
2	215
3	265
4	365



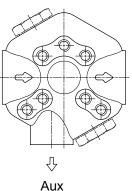
2 - Standard connection for differential indicator T2 plug not included


35.1

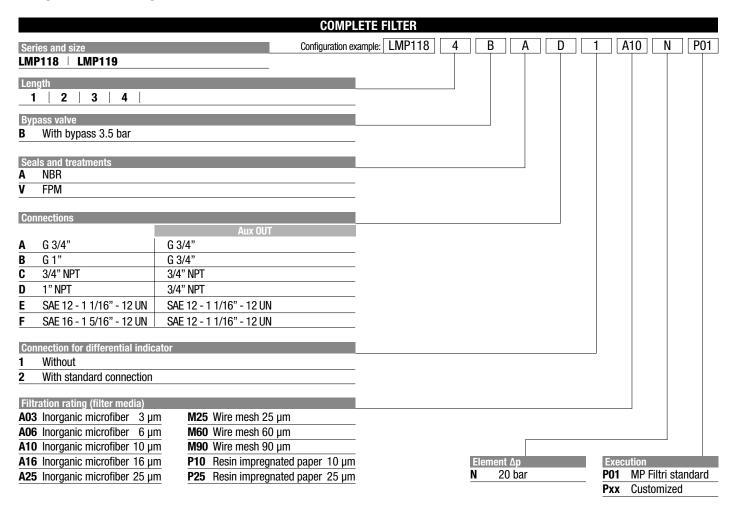
3 - Connection for differential indicator on the opposite side T2 plug not included

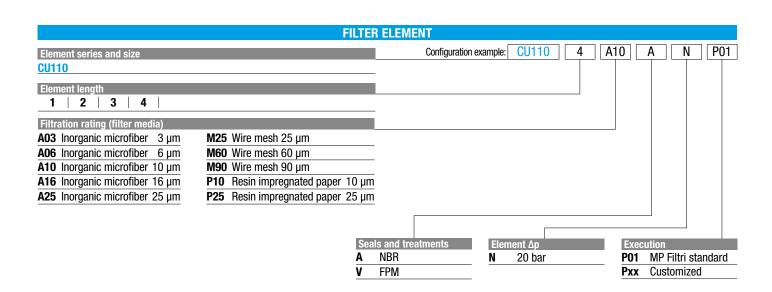

Fixing holes
Option for Metric and UNC screws

LMP 110



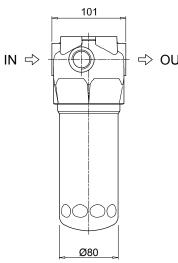
LMP 112



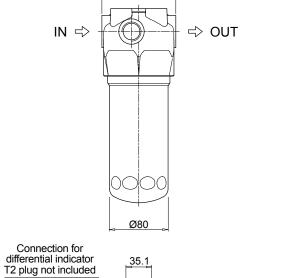

IN

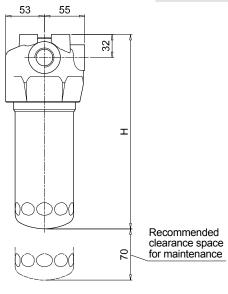
LMP 116

OUT

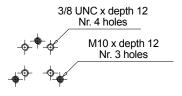


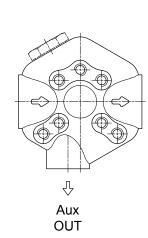
	CLOGO	GING IND	CAT0	RS	See page 686
DEA	Electrical differential indicator	_	DTA	Electronic differential indicator	
DEM	Electrical differential indicator		DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator		DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator				
		PLUGS			See page 706
T2	Differential indicator plug (not included)				

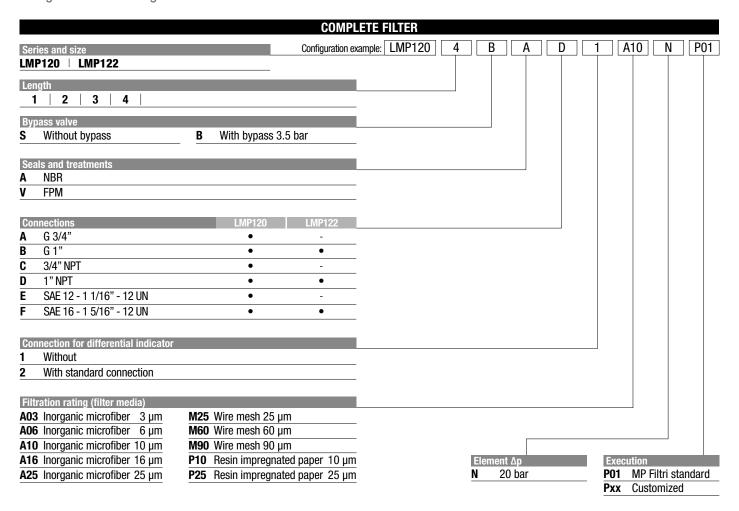

(M) MPFILTRI

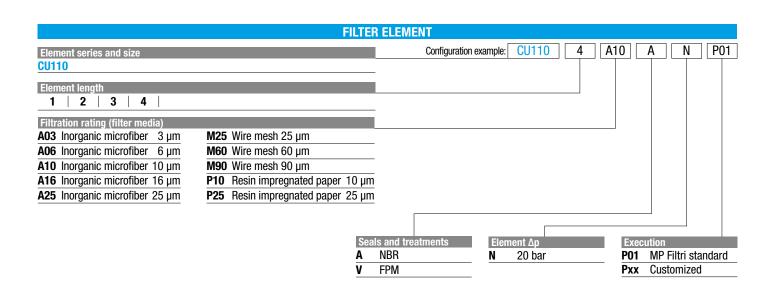

LMP118 - LMP119

Filter length	H [mm]
1	182
2	215
3	265
4	365

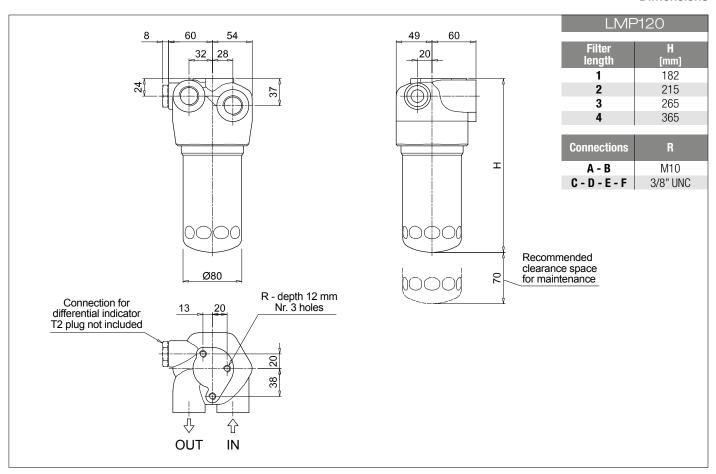


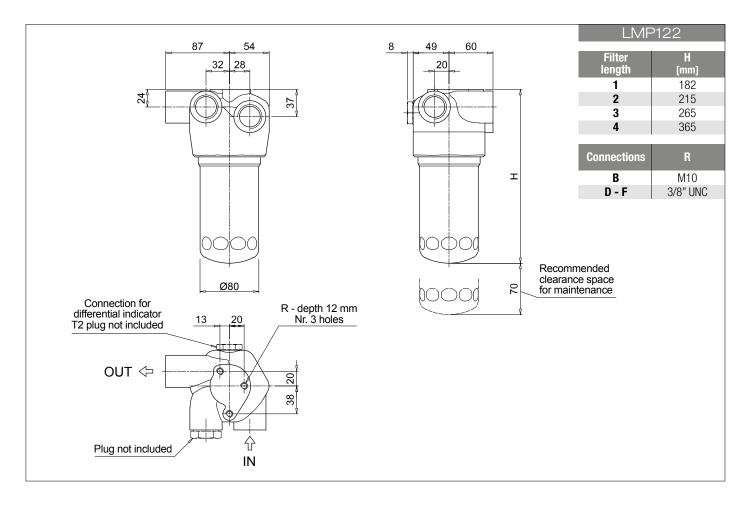

60.6

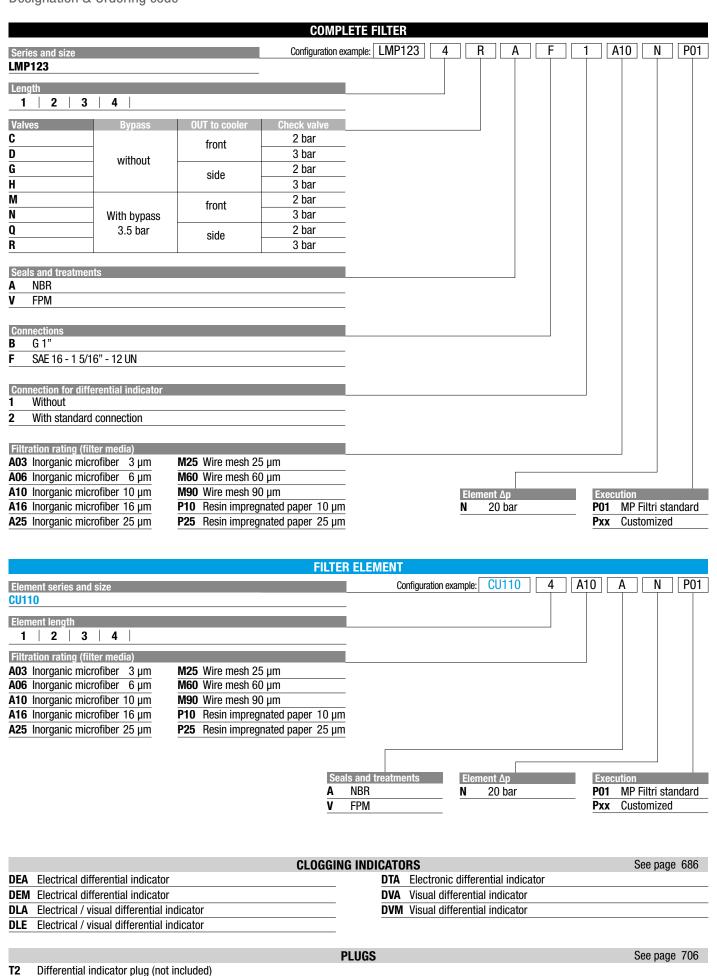


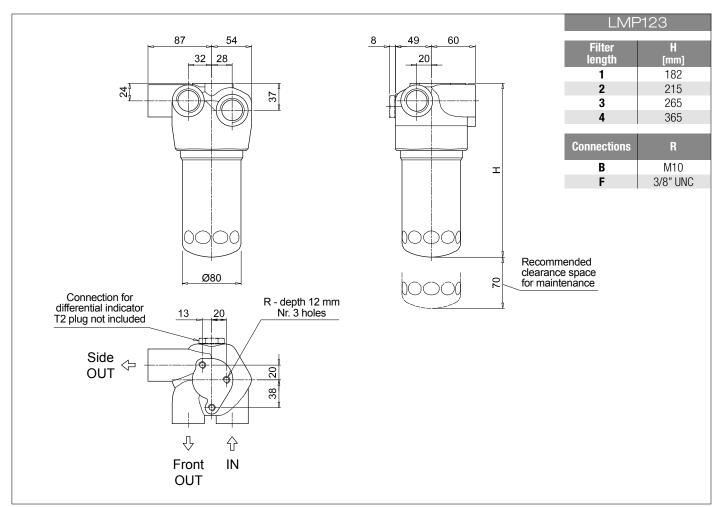


Fixing holes Option for Metric and UNC screws






	CLO	GGING INDI	CATO	RS	See page 686
DEA	Electrical differential indicator		DTA	Electronic differential indicator	
DEM	Electrical differential indicator		DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator		DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator				
		PLUGS			See page 706
T2	Differential indicator plug (not included)				


Differential indicator plug (not included)

LMP 110-120 SPARE PARTS

Order number for spare parts

MP 110 - 112 - 116 - 118 - 119	LMP 120	LMP 122 - 123
	(4) (3c) (3d)	
		(3d) (3c) (
(30) (30)		
		The state of the s
	$\forall \qquad \mathcal{V}$	
3a	3a)	3a
3b	(a) (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(3b)
2	2	2
		_ _

Item:	Q.ty: 1 pc.		1 pc. (3a ÷ 3d)	Q.ty: 1 pc.		
Filter series	Filter element	Seal Kit co	de number FPM	Indicator connection plug NBR FPM		
LMP 110-112-116 -118-119 LMP 120 LMP 122-123	See order table	02050478	02050479	T2H	T2V	

LMP 210-211

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 365 l/min

$_{\sf MP}$ 210-211 general information

Description

Low & Medium Pressure filters

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 365 l/min

LMP210 is a range of versatile low pressure filter for transmission, protection of sensitive components in low pressure hydraulic systems and filtration of the coolant into the machine tools.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 1 1/2", for a maximum flow rate of 365 l/min (LMP210)
- -Female threaded connections up to 1 1/2", for a maximum return flow rate of 365 l/min (LMP211)
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical and electronic differential clogging indicators

Common applications:

Delivery lines, in any low pressure industrial equipment or mobile machines

Technical data

Filter housing materials

- Head: Aluminium
- Bowl: Cataphoretic painted steel
- Bypass valve: AISI 304 Polyamide

Pressure

- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) $\pm 10\%$
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Connections

Inlet/Outlet In-Line

Note

LMP 210 - 211 filters are provided for vertical mounting

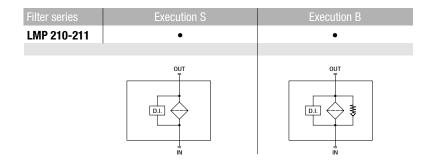
Weights [kg] and volumes [dm³]

Filter series	Weights [kg]				Volumes [dm³]					
	Length					Length				
LMP 210-211		3.10	4.80	6.40			1.60	2.10	2.80	

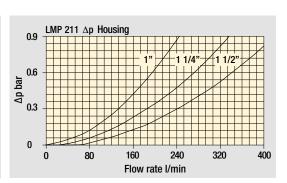
GENERAL INFORMATION LMP 210-211

FILTER ASSEMBLY SIZING Flow rates [I/min]

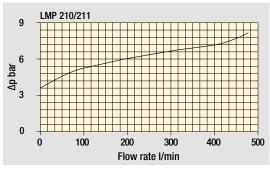
		Filter element design - N Series									
Filter series	Length	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25
LMP 210	1	106	130	190	200	221	286	287	287	261	265
	2	153	175	220	237	249	288	289	290	265	269
	3	204	214	248	260	265	289	290	291	277	281
	1	118	149	227	240	269	358	359	360	324	330
LMP 211	2	178	207	268	292	307	361	362	363	329	335
	3	247	260	306	323	329	362	363	364	345	351


Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

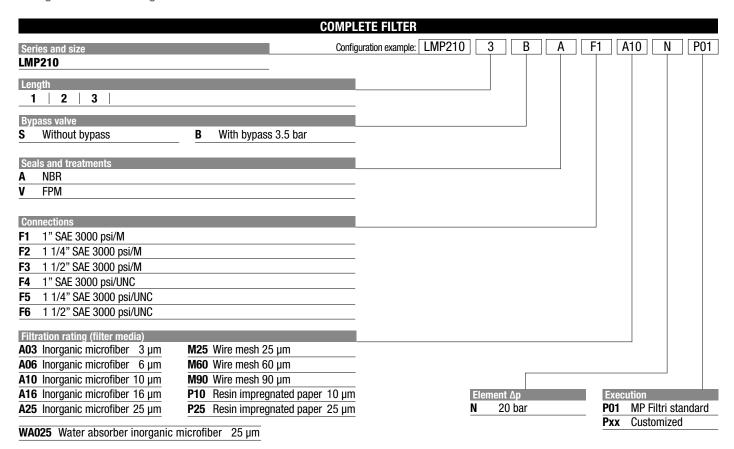
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

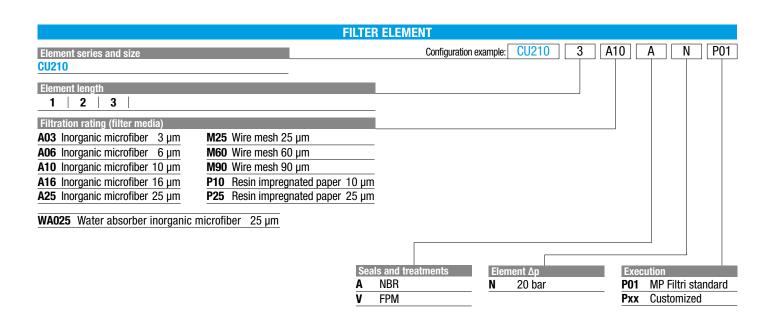

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

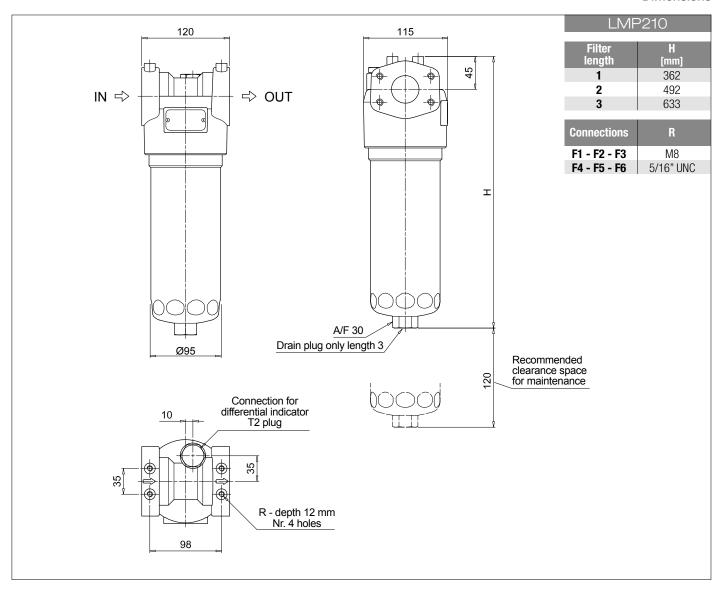
0.9 LMP 210 Δp Housing 0.6 0.6 0.3 0.3 0.3 0.0 0.0 80 160 240 320 400 Flow rate I/min

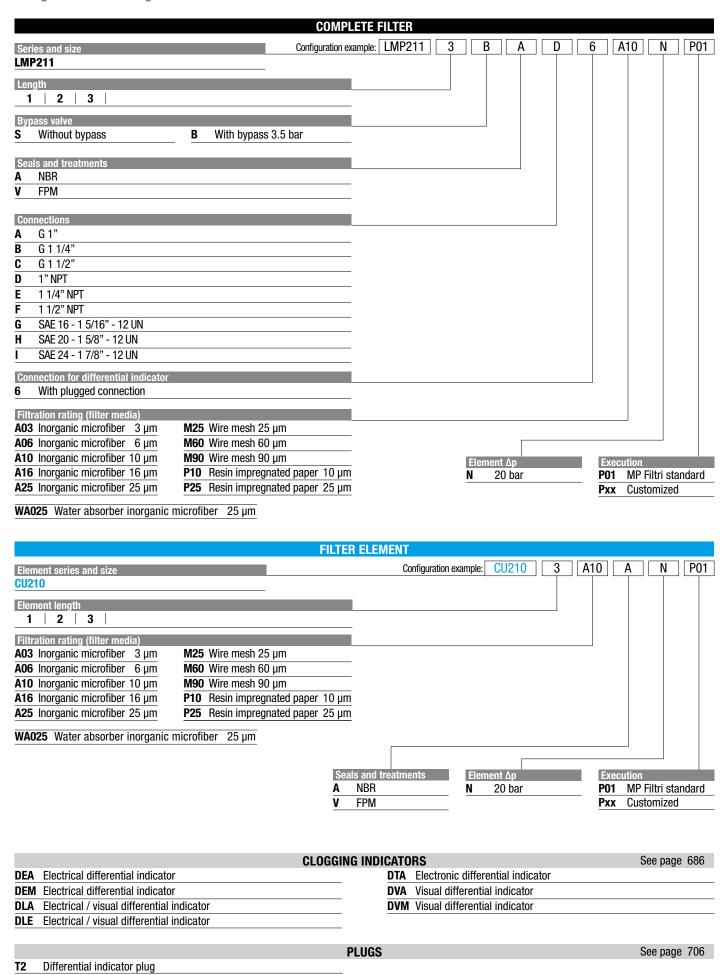

Pressure drop
Filter housings
Ap pressure drop

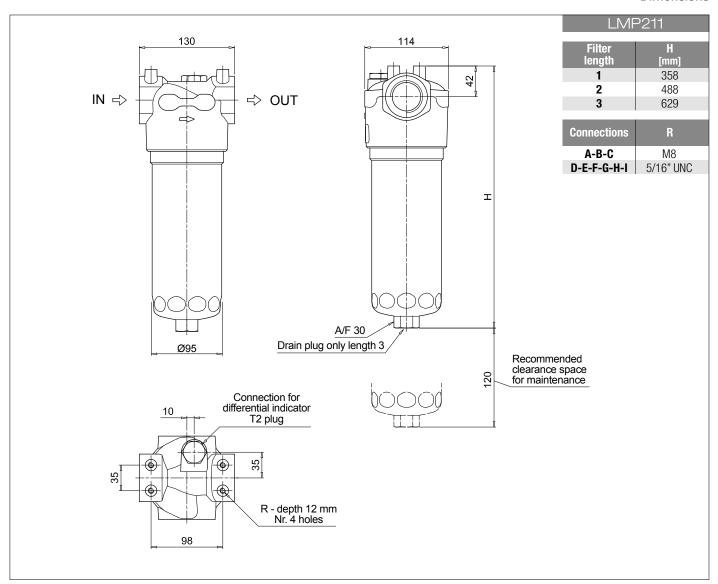


Bypass valve pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

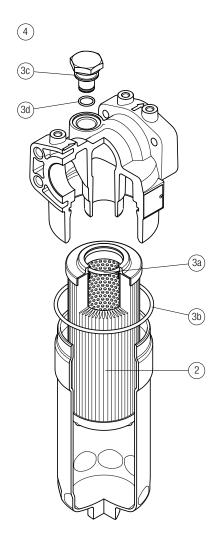


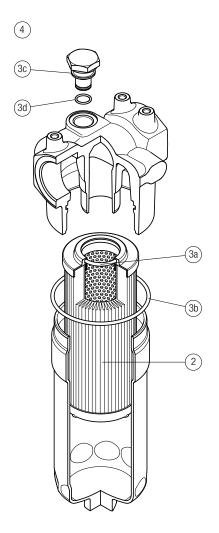



	CL	OGGING INDICATORS	See page 686
DEA	Electrical differential indicator	DTA Electronic differential indicator	
DEM	Electrical differential indicator	DVA Visual differential indicator	
DLA	Electrical / visual differential indicator	DVM Visual differential indicator	
DLE	Electrical / visual differential indicator		
		PLUGS	See page 706
T2	Differential indicator plug		
Low &	Medium Pressure filters 338	— (()) MPATRI ————————————————————————————————————	

_MP 210

Low & Medium Pressure filters 340





P 210-211 SPARE PARTS

Order number for spare parts

LMP 210 LMP 211

	Q.ty: 1 pc.	Q.ty:	1 pc.	Q.ty: 1 pc.			
Item:	2		3 (3a ÷ 3d)		4		
Filter series	Filter element	Seal Kit co NBR	de number FPM	Indicator connection plug NBR FPM			
LMP 210-211	See order table	02050435	02050436	T2H	T2V		

LMP 400-401 & 430-431 series

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 780 l/min

Description

Low & Medium Pressure filters

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 780 l/min

LMP400 is a range of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 2" and flanged connections up to 2 1/2", for a maximum flow rate of 780 l/min
- In line or 90° connections, to meet any type of application
- Base-mounting design also available, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems

Technical data

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Bypass valve: Steel

Pressure LMP 400 length 2 -3 - 4

- Working pressure: 6 MPa (60 bar)
- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Pressure LMP 400 length 5 - 6

- Working pressure: 5 MPa (50 bar)
- Test pressure: 7.5 MPa (75 bar)
- Burst pressure: 15 MPa (150 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 5 MPa (50 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N W: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Connections

LMP 400 - 430: In-line Inlet/Outlet LMP 401 - 431: 90° Inlet/Outlet

Note

LMP 400 filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]					Volumes [dm³]						
	Length						Length					6
LMP 400-401 & 430-431		7.20	8.10	8.80	11.90	14.40		3.50	5.00	6.50	9.50	13.50

FILTER ASSEMBLY SIZING Flow rates [I/min]

				Eil	ter element de	esign - N Ser	ies		
				- 111	ter element at	colgii - N oci			
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25
	2	205	244	370	411	515	720	524	556
	3	280	333	474	515	602	760	637	660
LMP 400	4	347	400	535	564	637	769	660	688
	5	459	501	610	660	717	781	700	721
	6	504	575	676	689	728	783	708	727
	2	200	236	347	382	468	628	475	501
	3	268	315	434	468	537	659	565	582
LMP 401	4	328	373	484	507	565	665	582	603
	5	423	456	544	582	626	674	613	629
	6	459	516	594	604	634	676	619	633
LMP 430	5	459	501	610	660	717	781	700	721
LIVIP 43U	6	504	575	676	689	728	783	708	727
LMP 431	5	423	456	544	582	626	674	613	629
	6	459	516	594	604	634	676	619	633

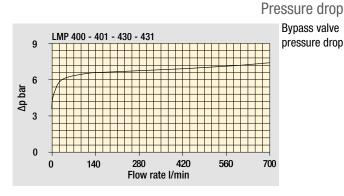
Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

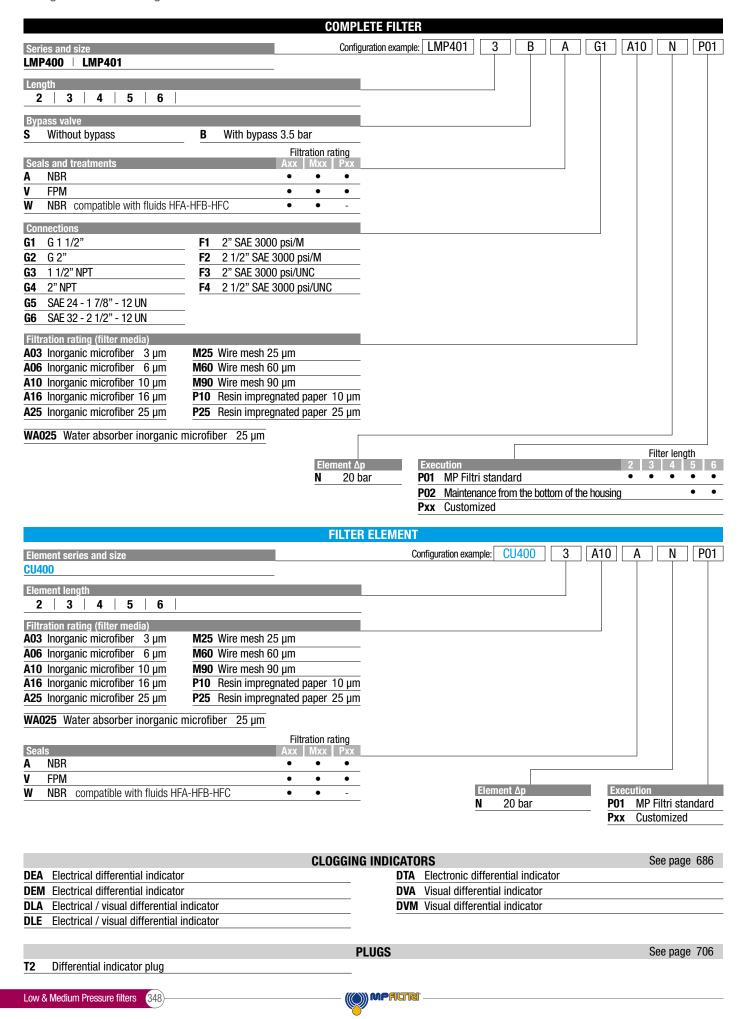

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

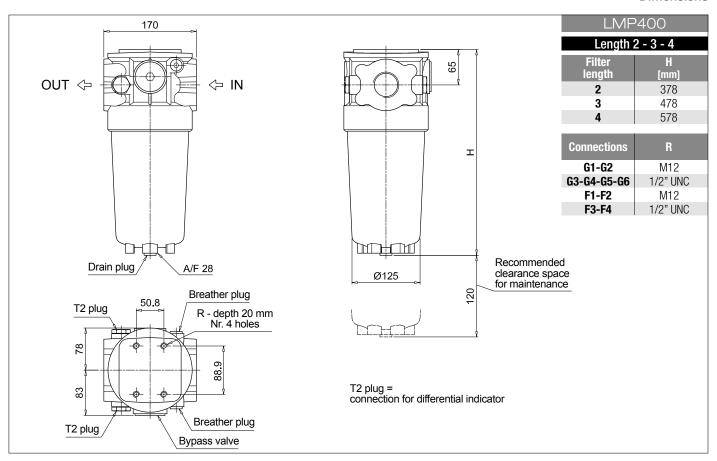
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

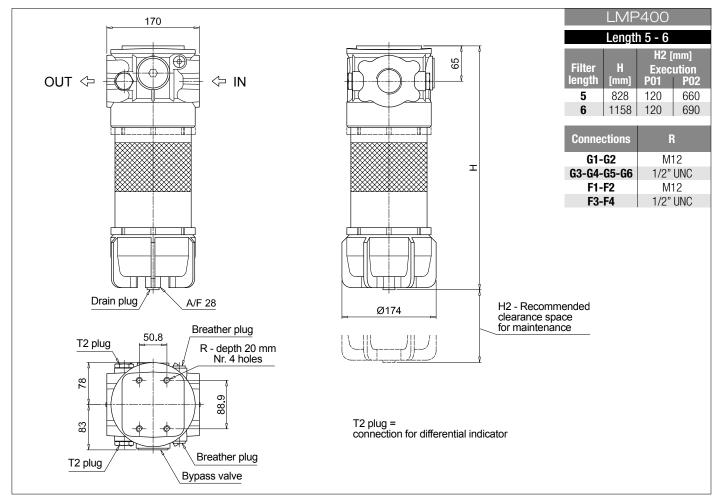
LMP 430-431: execution P02

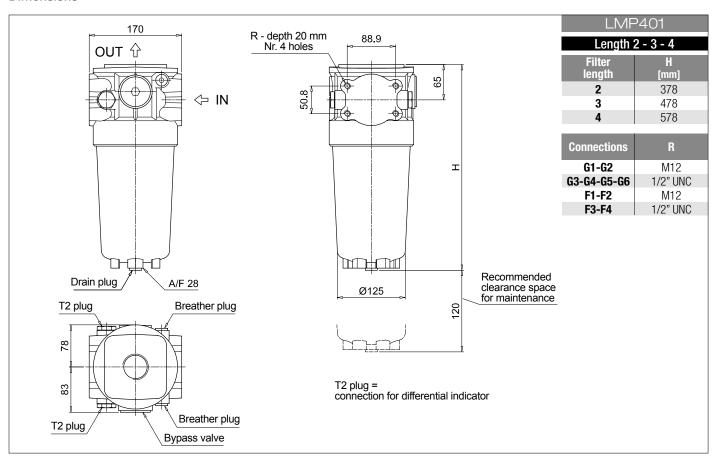

"Internal tube for low flow rate" is recommended for flow rate values below 100/150 l/min. The use of option P02 makes it easier to fill the housing with the operating fluid.

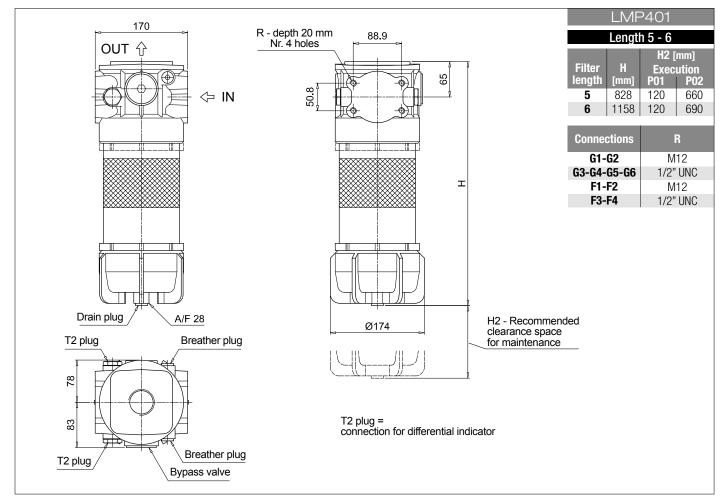
Hydraulic symbols

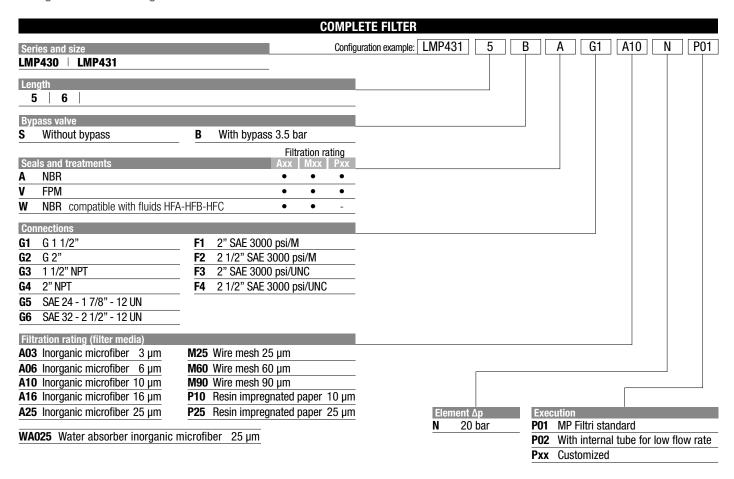

Filter housings Δp pressure drop

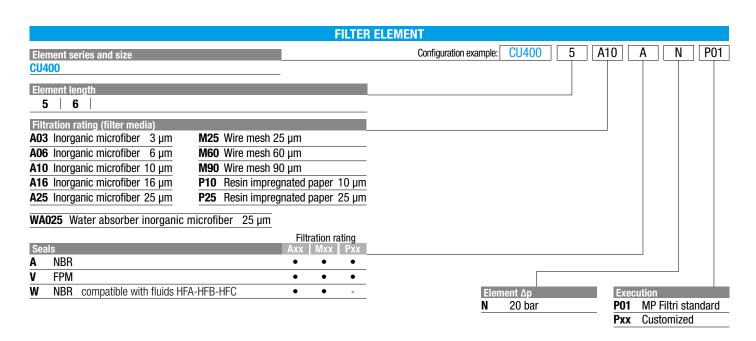


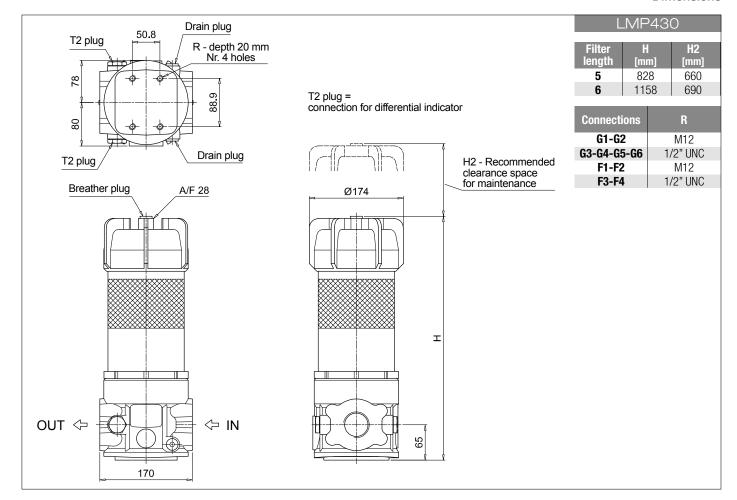

The curves are plotted using mineral oil with density of 0.86 kg/dm^3 in compliance with ISO 3968. Δp varies proportionally with density.

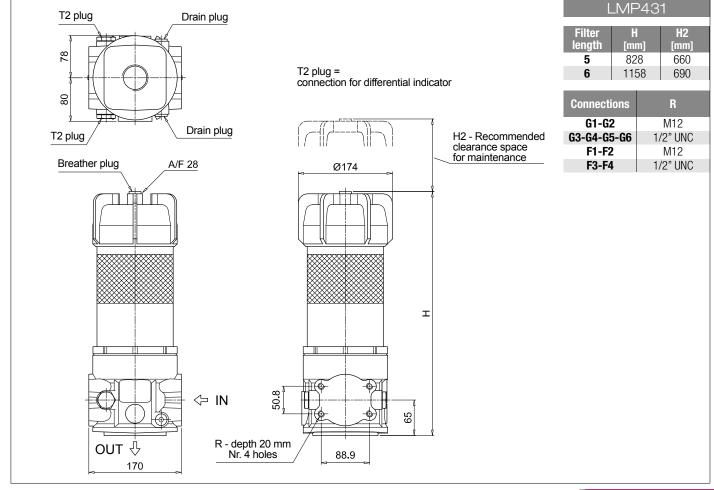

LMP 400-401

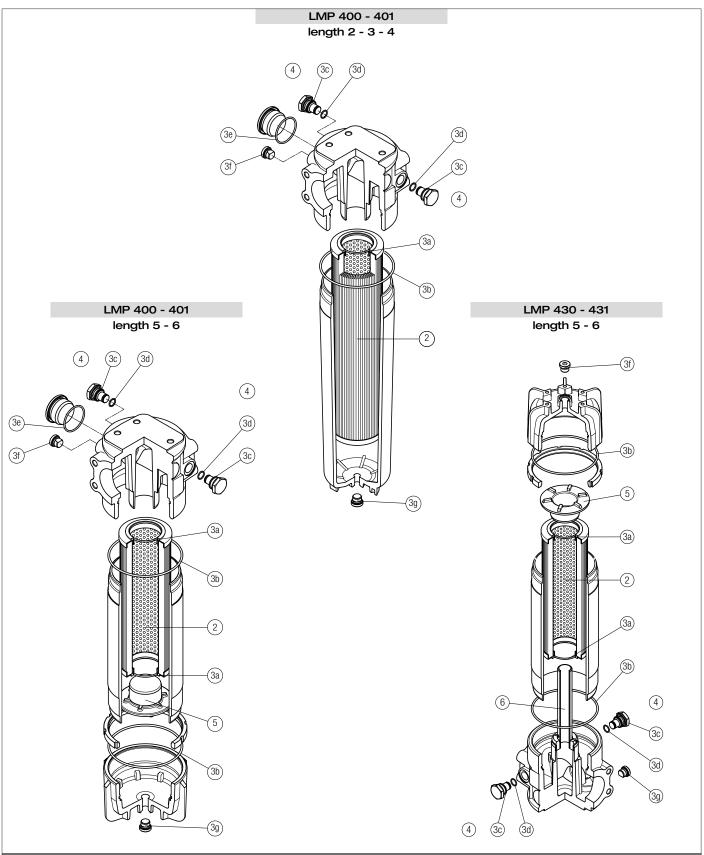

Designation & Ordering code






LMP 430-431


Designation & Ordering code



	CLOGGING INDICATORS									
DEA	Electrical differential indicator	Electronic differential indicator								
DEM	Electrical differential indicator		DVA	Visual differential indicator						
DLA	Electrical / visual differential indicator	-	DVM	Visual differential indicator						
DLE	Electrical / visual differential indicator	-								
		PLUGS			See page 706					
T2	Differential indicator plug	_								

Order number for spare parts

	Q.ty: 1 pc.	Q.ty:	1 pc.	Q.ty:	2 pcs.	Q.ty: 2 pcs.		Q.ty: 1 pc.	
Item:	2 3 (3a ÷ 3g) 4 5		6						
Filter	Filter	Seal Kit co	de number	Indicator co	nection plug	Housing spigot		Internal tube for low flow rate,	
series	element	NBR	FPM	NBR	FPM	no bypass	with bypass	execution P02	
LMP 400-401 length 2-3-4	See	02050391	02050392						
LMP 400-401 length 5-6	order	02050393	02050394	T2H	T2V	01044108			
LMP 430-431 length 5-6	table	02050393	02050394			01044108	02001414	Length 5: 02025041	Length 6: 02025042

LMP 950-951 series

Maximum working pressure up to 3 MPa (30 bar) - Flow rate up to 2400 l/min

1 GENERAL INFORMATI

Description

Low & Medium Pressure filters

Maximum working pressure up to 3 MPa (30 bar) Flow rate up to 2400 I/min

LMP950 is a range of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 2400 l/min
- In line or 90° connections, to meet any type of application
- Base-mounting design, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems
- Lubrication systems

Technical data

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Bypass valve: Anodized Aluminium

Pressure

- Test pressure: 4,5 MPa (45 bar)
- Burst pressure: 12 MPa (120 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 3 MPa (30 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Connections

LMP 950: In-line Inlet/Outlet LMP 951: 90° Inlet/Outlet

Note

LMP 950 - 951 filters are provided for vertical mounting

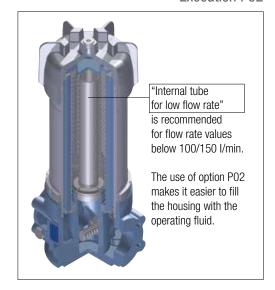
Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]				
	Length 2 3	Length 2 3				
LMP 950-951	25.1 33.5	15 28				

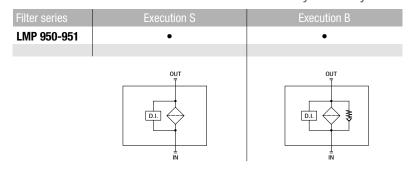
GENERAL INFORMATION LMP 950-95

FILTER ASSEMBLY SIZING Flow rates [I/min]

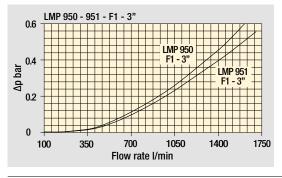
		Filter element design - N Series									
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90				
LMP 950	2	613	756	953	1219	1515	2170				
LIVIP 950	3	1148	1219	1502	1713	1808	2293				
LMP 951	2	635	789	1007	1308	1649	2420				
	3	1226	1308	1634	1881	1993	2566				

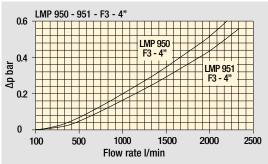

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

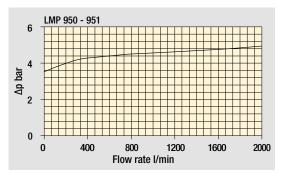

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

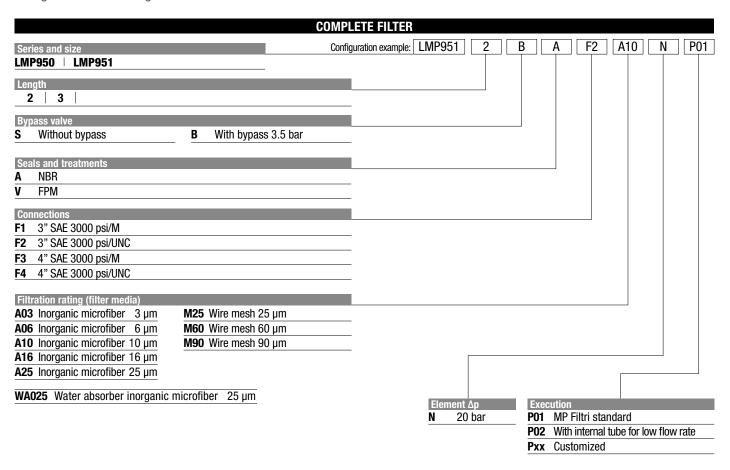

Execution P02

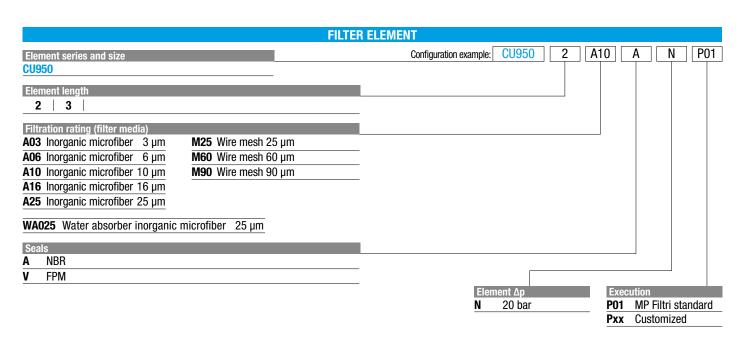


Hydraulic symbols

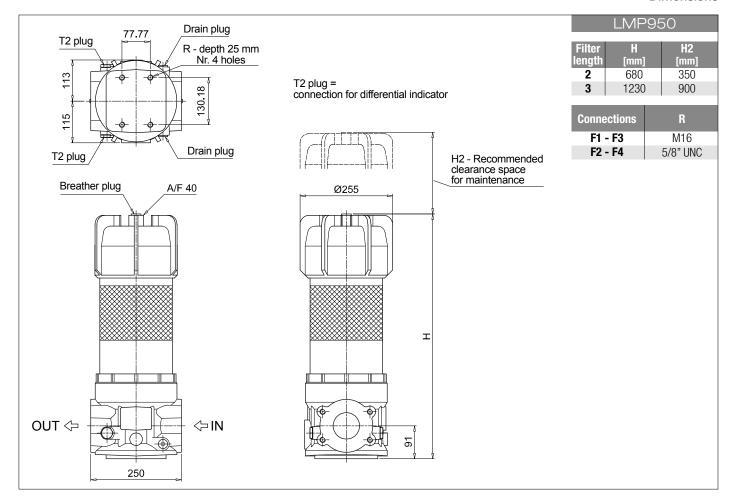


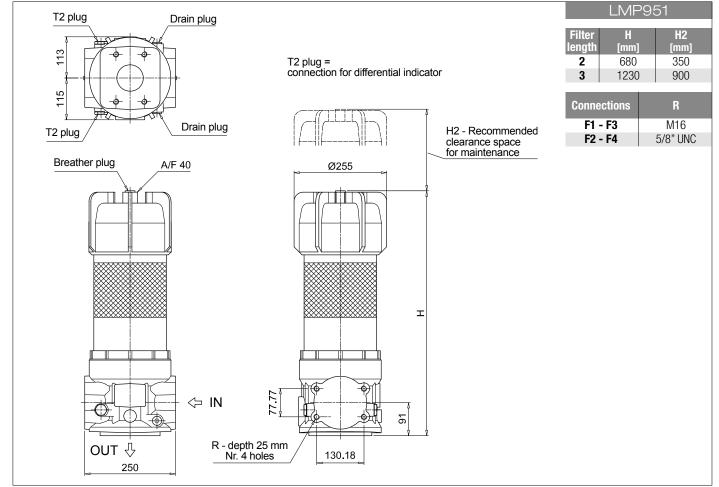
Pressure drop Filter housings Δp pressure drop

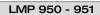

Bypass valve pressure drop

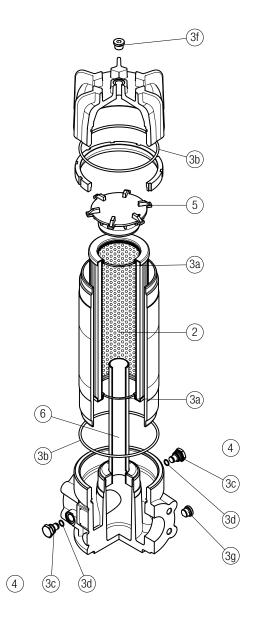


The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.


MP 950-951


Designation & Ordering code


	CLOGGING INDICATORS									
DEA	A Electrical differential indicator DTA Electronic differential indicator									
DEM	Electrical differential indicator		DVA Visual differential indicator							
DLA	Electrical / visual differential indicator		DVM	Visual differential indicator						
DLE	Electrical / visual differential indicator									
	PLUGS	See page 706		AC	CESSORIES	See page 438				
<u>T2</u>	Differential indicator plug		CFA	Retaining clamp						



950-951 SPARE PARTS

Order number for spare parts

	Q.ty: 2 pcs.	Q.ty:	1 pc.	Q.ty: 2 pcs.		Q.ty:	1 pc.	Q.ty: 1 pc.		
Item:	2	3 (3a ÷ 3g)		4		5		6		
Filter series	Filter						g spigot	Internal tube for low flow rate, exec. P02		
	element	NBR	FPM	NBR	FPM	no bypass	with bypass	length 2	length 3	
LMP 950-951 length 2-3	0-931 order 02050367 02050368 T2H T2V		01044106	02001379	02025032	02025033				

LMP 952-953-954 series

Maximum working pressure up to 2.5 MPa (25 bar) - Flow rate up to 4500 l/min

LMP 952-953-954 general information

Description

Low & Medium Pressure filters

Maximum working pressure up to 2.5 MPa (25 bar) Flow rate up to 4500 l/min

LMP952, LMP953 and LMP954 are ranges of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

Multiple LMP950 filters are connected to a manifold to reduce the pressure drop caused by the filter media and to increase the life time of the filter element.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 4" flanged connections, for a maximum flow rate of 4500 l/min
- Base-mounting design, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems

Technical data

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Manifolds: Welded Phosphatized Steel
- Bypass valve: Anodized Aluminium

Pressure

Test pressure: 3.5 MPa (35 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Number of filter elements

- LMP 952: 2 filter elements CU950-3
- LMP 953: 3 filter elements CU950-3
- LMP 954: 4 filter elements CU950-3

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Connections

LMP 952-953-954:

In-line Inlet/Outlet

Note

LMP 952 - 953 - 954 filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]
	Length 3	Length 3
LMP 952	96	66
LMP 953	138	99
LMP 954	192	132

GENERAL INFORMATION LMP 952-953-954

FILTER ASSEMBLY SIZING Flow rates [I/min]

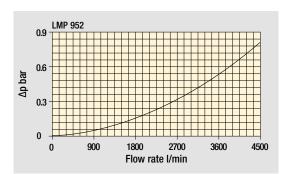
			Filter element design - N Series									
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90					
LMP 952	3	2172	2294	2766	3106	3256	3998					
LMP 953	3	2842	2964	3403	3696	3820	4395					
LMP 954	3	3259	3372	3770	4026	4133	4618					

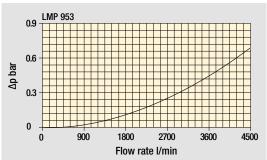
Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

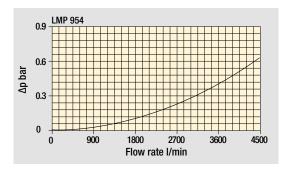
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

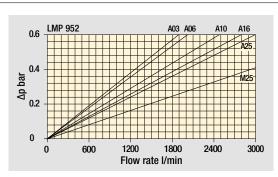
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

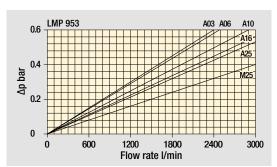

Hydraulic symbols

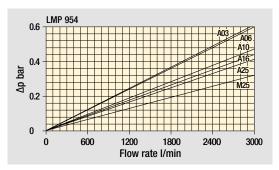

Filter series	Execution S - Execution B	Execution S - Execution B	Execution S - Execution B
LMP 952	•	-	-
LMP 953	-	•	-
LMP 954	-	-	•
	S D.I. OUT	S DI. OUT	S D.I. OUT
	D.I. OUT	B HOUT	IN II

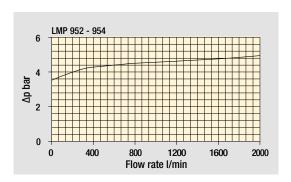

LMP 952-953-954 general information

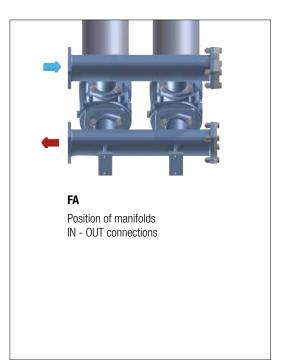
Pressure drop

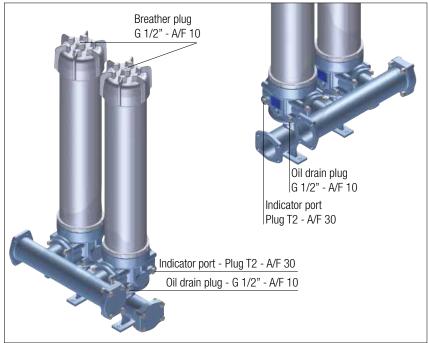

Filter housings Δp pressure drop






Pressure drop of filter complete with cartridge, oil viscosity 30 mm²/s (cSt)

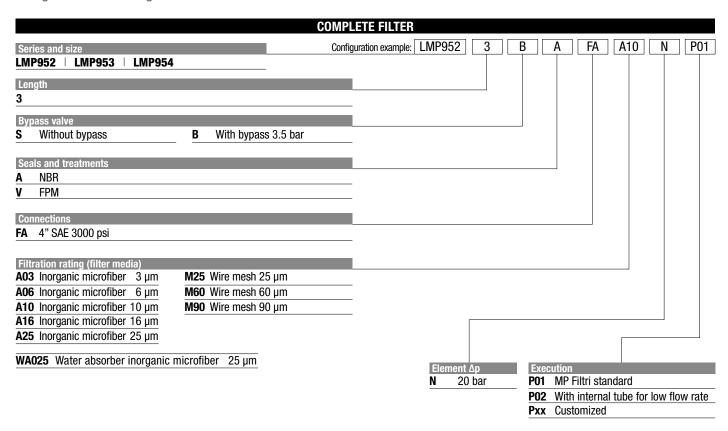


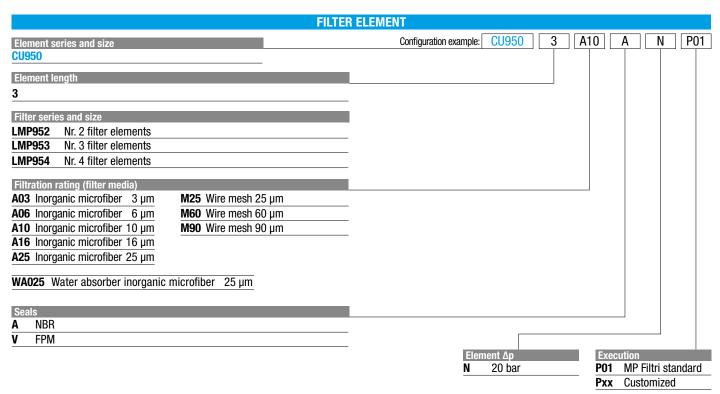

Bypass valve pressure drop

The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

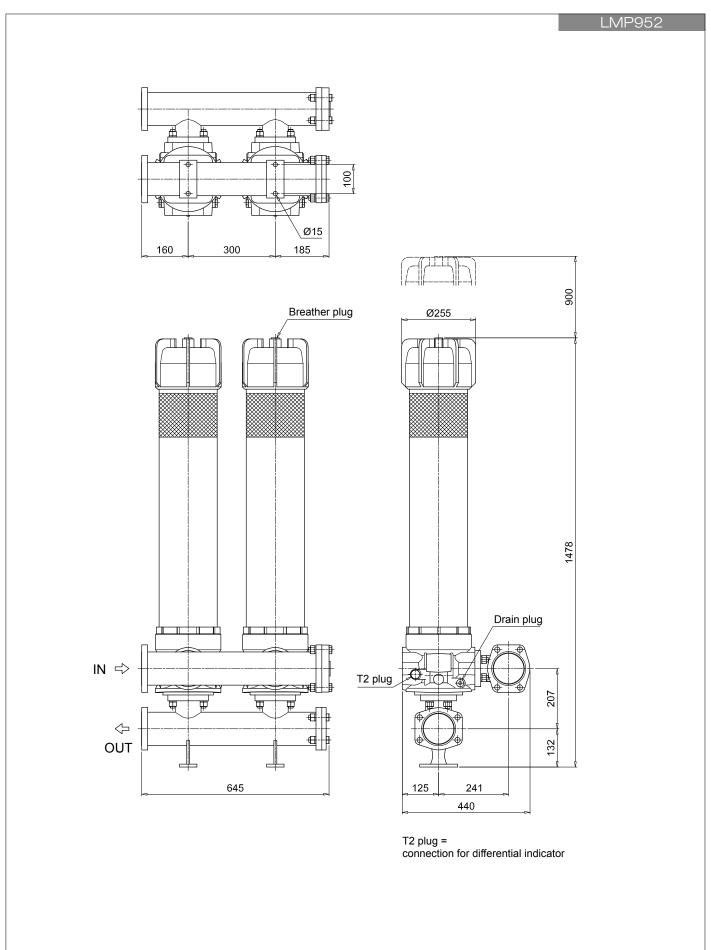

Manifolds Focus on

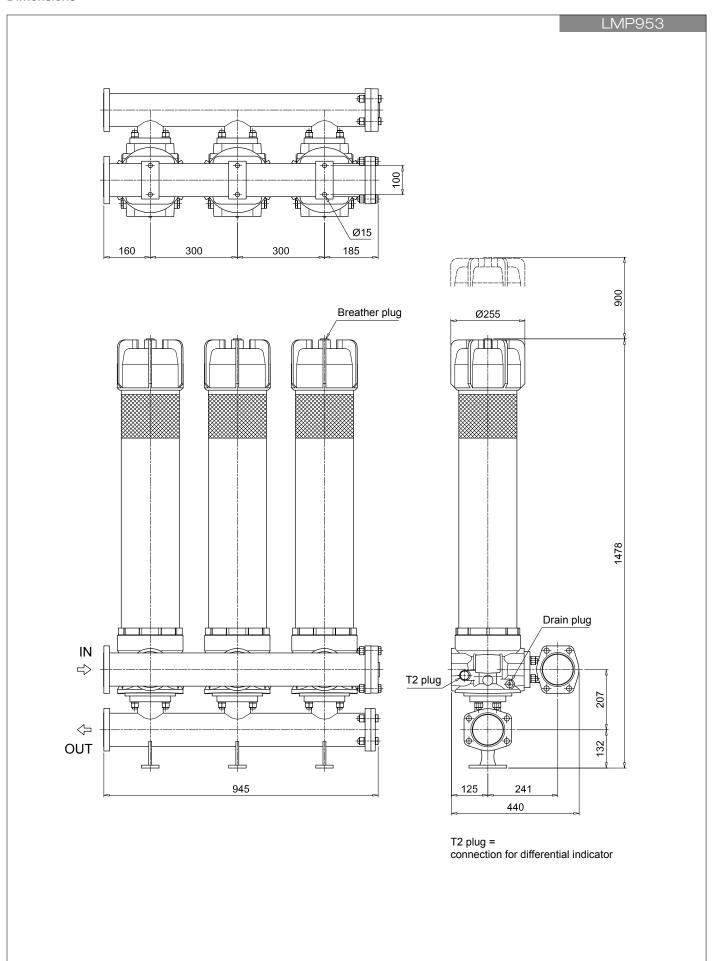
Execution P02

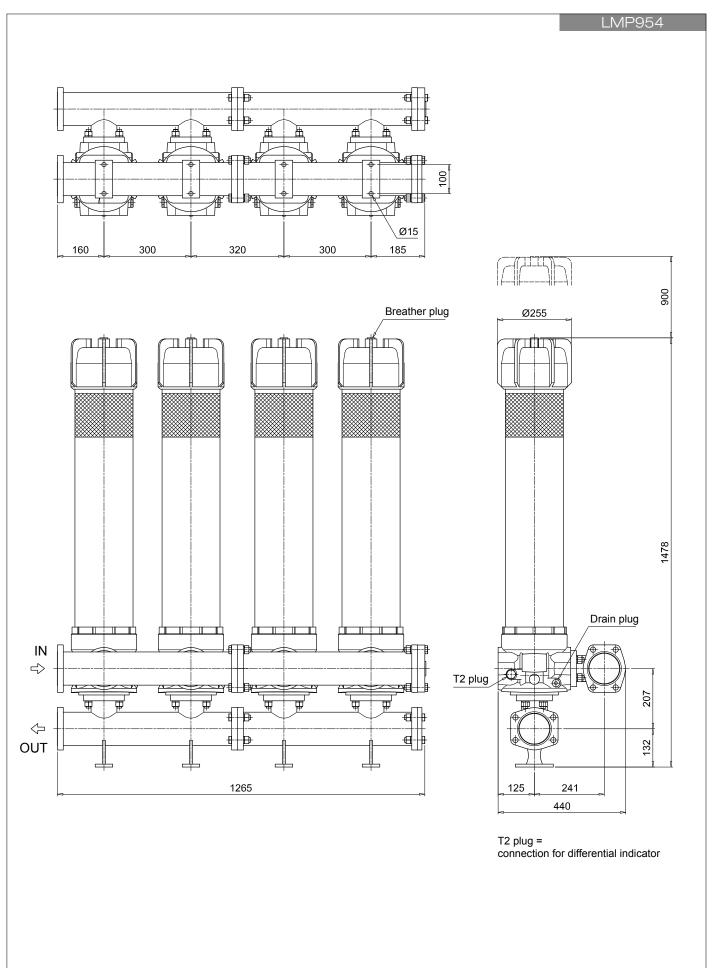

CMV4 & CUV4 Flange options



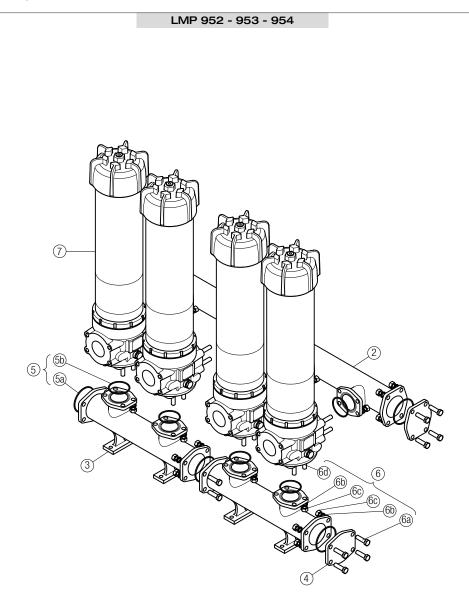
		<u> </u>
Code	Thread	Materials
CMV4	G 1 1/4"	1 - 4" SAE flange 2 - 0-R 4437 (FPM) for flange 3 - Plug G 1-1/4" 4 - 0-R 3168 for plug (FPM) 5 - No. 4 Hex bolt screws UNI-EN 24017 M16 x 65-10.9 6 - No. 4 Spring washers UNI 1751-B 16 7 - No. 4 Nuts UNI 5587 - M16
CUV4	SAE 20	1 - 4" SAE flange 2 - 0-R 4437 (FPM) for flange 3 - Plug SAE 20 1 5/8" - 12 UN 4 - 1147 0-R for plug (FPM) 5 - No. 4 Hex bolt screws 5/8" UNC x 2 1/2" 6 - No. 4 Spring washers UNI 1751-B 16 7 - No. 4 Nuts 5/8" UNC
	Oil drain plug Flange with oil for rapid disch	drain plug


_MP 952-953-954


Designation & Ordering code



	CLOGG	ING INDI	CATO	RS	See page 686
DEA	Electrical differential indicator	_	DTA	Electronic differential indicator	
DEM	Electrical differential indicator		DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	-	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator	-			
		PLUGS			See page 706
T2	Differential indicator plug	_			



952-953-954 SPARE PARTS

Order number for spare parts

Item 7: for complete filter code and spare parts, see LMP 950 - 951 series chapter

Quantity:
- filter spare parts:
LMP 952 - 2 pcs.
LMP 953 - 3 pcs.
LMP 954 - 4 pcs.

- filter seal kit: LMP 952 - 2 pcs. LMP 953 - 3 pcs. LMP 954 - 4 pcs.

Item:	m: 2 3 4			5 (5a-5b)			6 (6a ÷ 6d)	7				
Filter	ter Manifold 4" SAE 3000 psi plugged flange			Manifolds seal kit		Threaded fasteners kit		Filter				
series	Q.ty	IN	OUT	Q.ty		Q.ty	NBR	FPM	Q.ty		Q.ty	
LMP 952	1 pc.	01039270	01039271	2 pcs.		1 pc.	02050404	02050405	1 pc.	02049051	2 pcs.	
LMP 953	1 pc.	01039337	01039338	2 pcs.	01042012	1 pc.	02050404	02050405	1 pc.	02049052	3 pcs.	LMP9513xxF1xxxNP0x
LMP 954	2 pcs.	01039270	01039271	2 pcs.		1 nc.	02050406	02050407	1 pc.	02049053	4 ncs.	

LMD 211 series

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 200 l/min

LMD 211 general information

Description

Technical data

Low & Medium Pressure filters

Duplex

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 200 l/min

LMD211 is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/2" and flanged connections up to 1 1/2", for a maximum flow rate of 200 l/min
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve integrated in the changeover lever, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Optional sampling ports, to get samples of fluid or to connect additional instrument to the system
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Filter housing materials

- Head: Aluminium
- Bowl: Cataphoretic painted steel
- Bypass valve: AISI 304 Polyamide

Pressure

- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) $\pm 10\%$
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25° C to +110° C

Connections

Inlet/Outlet In-Line

Note

LMD 211 filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]					Volumes [dm³]				
	Length					Length				
LMD 211		9.5	11.2	12.8			4.1	4.6	5.3	

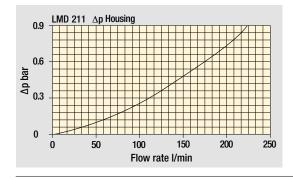
GENERAL INFORMATION LMD 211

FILTER ASSEMBLY SIZING Flow rates [I/min]

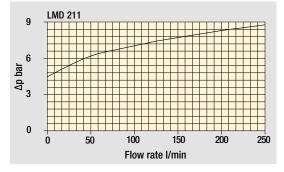
		Filter element design - N Series										
Filter series	Length	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
	1	90	95	140	147	156	191	192	192	177	181	
LMD 211	2	113	121	158	162	173	192	192	193	181	183	
	3	131	146	166	169	177	193	194	194	184	187	

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

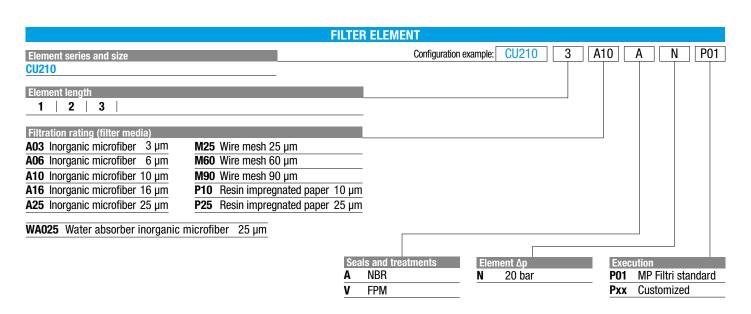

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

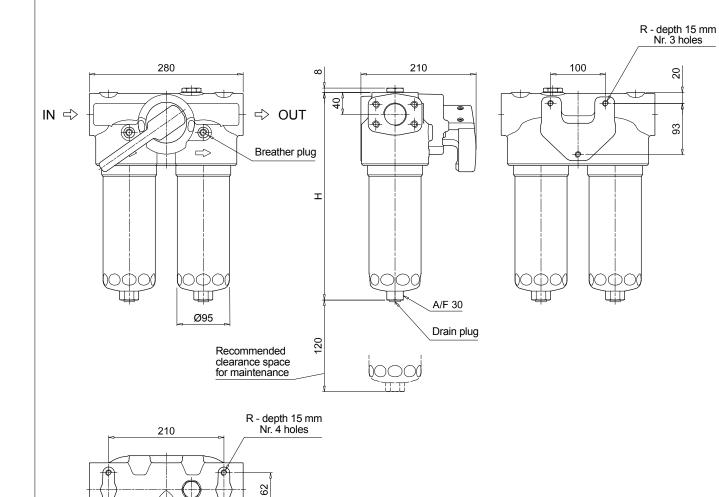
Filter series	Style S	Style B
LMD 211	•	•
	OUT D.I.	D.I.

 $\begin{array}{c} Pressure \ drop \\ Filter \ housings \ \Delta p \ pressure \ drop \end{array}$


Bypass valve pressure drop

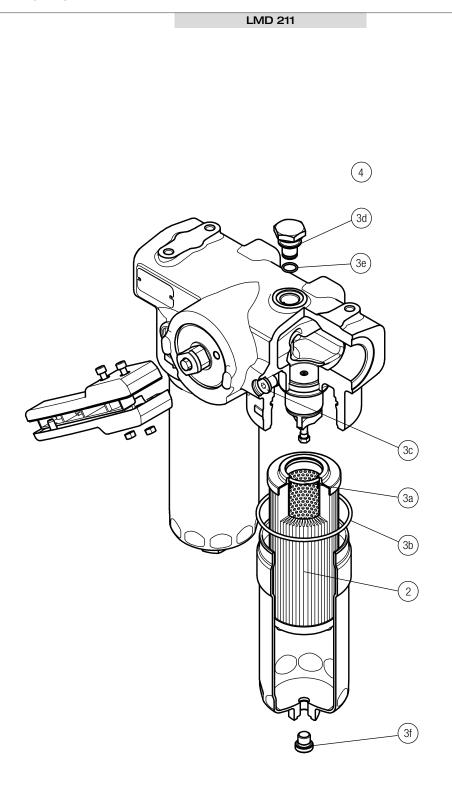
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

Designation & Ordering code



	CLOGGING INDICATORS						
DEA	Electrical differential indicator	_	DTA	Electronic differential indicator			
DEM	Electrical differential indicator		DVA	Visual differential indicator			
DLA	Electrical / visual differential indicator	_	DVM	Visual differential indicator			
DLE	Electrical / visual differential indicator	_					
		PLUGS			See page 706		
T2	Differential indicator plug	_					

LMD211


Filter length	H [mm]
1	383
2	513
3	651

Connections	R
С	M10
F-I	3/8" UNC
L	M10
M - N	3/8" LINC

Connection for differential indicator T2 plug

Order number for spare parts

	Q.ty: 1 pc.	Q.ty	: 1 pc.	Q.ty: 2 pcs.		
Item:	m: 2		3 (3a ÷ 3f)	4		
Filter series	Filter element	Seal Kit code number NBR FPM		Indicator connection plug NBR FPM		
LDD	See order table	02050671	02050672	T2H	T2V	

LMD 400-401 & 431 series

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 600 l/min

GENERAL INFORMATION

Description

Low & Medium Pressure filters

Duplex

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 600 l/min

LMD400 is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 2 1/2" flanged connections, for a maximum flow rate of 600 l/min
- LMD400: In-line connections
- LMD401: In-line connections with compact design
- LMD431: In-line connections with compact design and base mounting
- Base-mounting design also available, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Technical data

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Manifolds: Steel Painted black
- Bypass valve: Steel
- 3-way ball valve: Steel housings Stainless Steel ball
- Valve: Phosphatized Steel Stainless Steel

Pressure

Test pressure: 2.5 MPa (25 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Δp element type

- Microfibre filter elements series N W: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

FPM series V

Temperature

From -25° C to +110° C

Connections

- LMD 400-401: In-line Inlet/Outlet
- LMD 401: Same side
- LMD 400-401-431: In-Line

Note

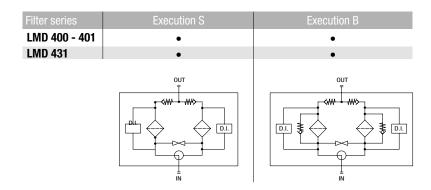
LMP 400 - 401 - 431 filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

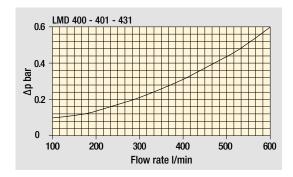
Filter series	Weights [kg]				Volumes [dm³]				
	Length				Length				
LMD 400 - 401		60	65	72		20	28	33	
LMD 431		-	68	78		-	28	33	

FILTER ASSEMBLY SIZING Flow rates [I/min]

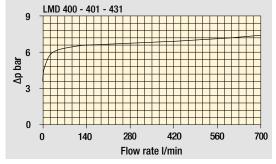
			Filter element design - N Series						
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	P10	P25
	4	308	349	453	474	530	628	547	567
LMD 400 - 401	5	395	427	509	547	589	637	577	592
	6	429	483	558	568	597	639	583	597
LMD 431	5	395	427	509	547	589	637	577	592
LIVID 431	6	429	483	558	568	597	639	583	597


Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

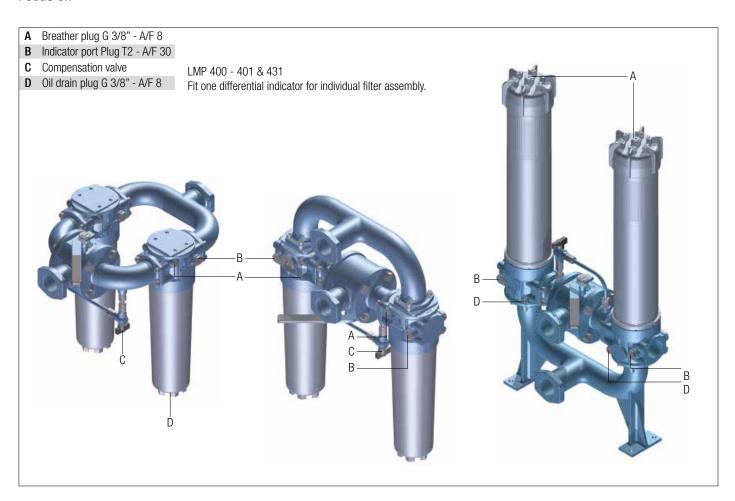
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

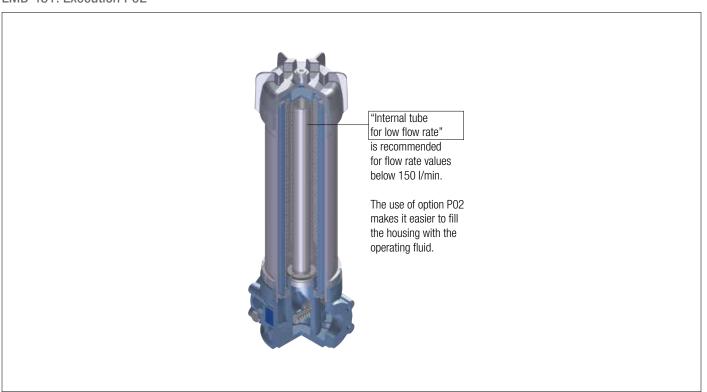
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

Pressure drop Filter housings Δp pressure drop

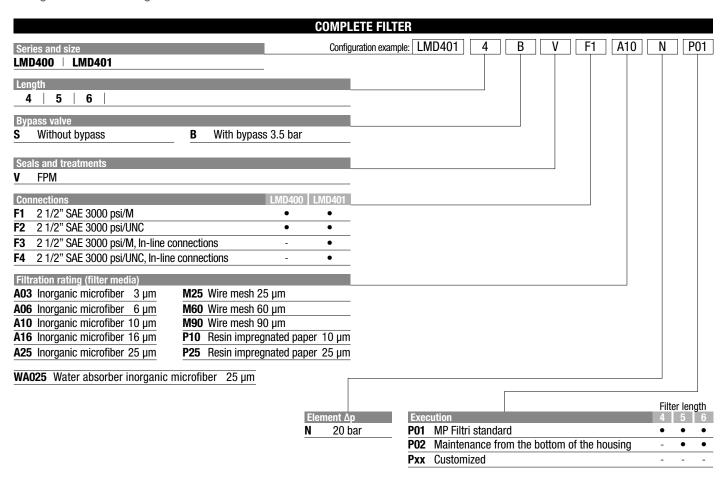


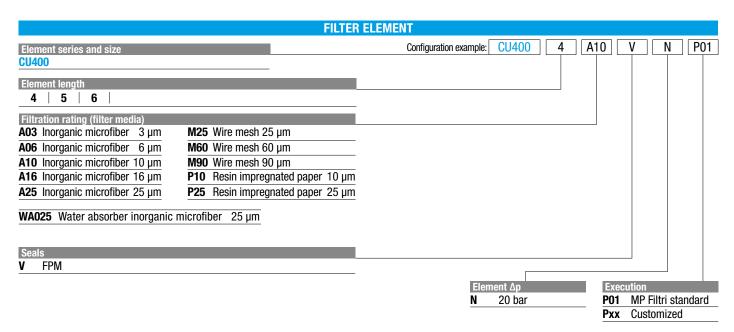
Bypass valve pressure drop

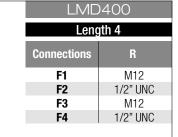


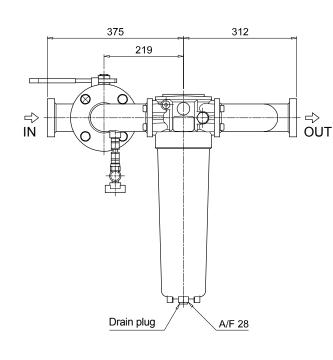
The curves are plotted using mineral oil with density of 0.86 kg/dm^3 in compliance with ISO 3968. Δp varies proportionally with density.

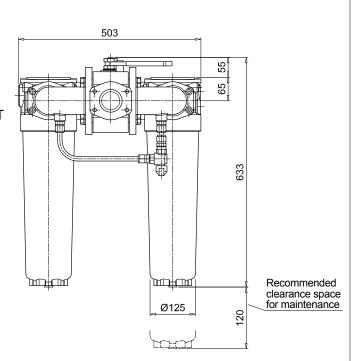
Focus on

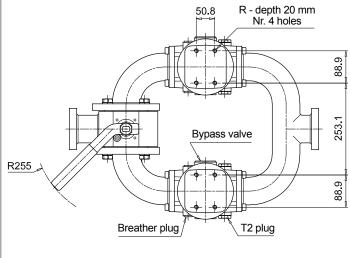

LMD 431: Execution P02



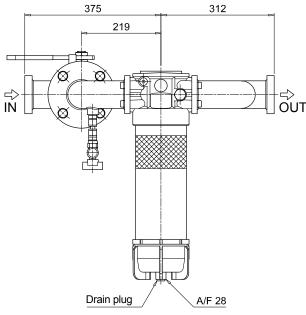

LMD 400-401


Designation & Ordering code

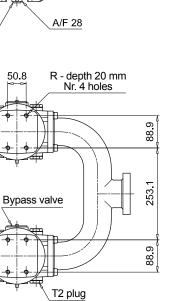




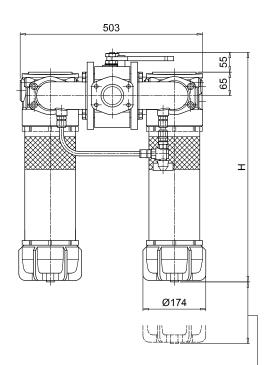
	See page 686				
DEA	Electrical differential indicator		DTA	Electronic differential indicator	
DEM	Electrical differential indicator		DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	_	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator	_			
		PLUGS			See page 706
T2	Differential indicator plug	_			



T2 plug = Connection for differential indicator

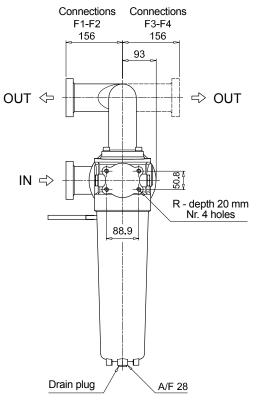

LMD400

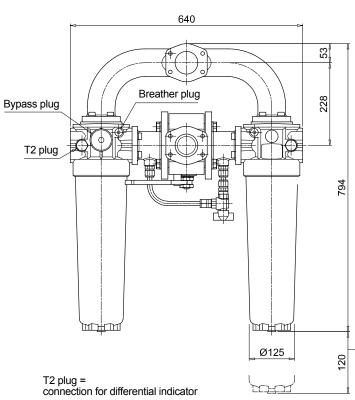
Length 5 - 6						
Filter length	H [mm]	H2 [Exec P01	mm] ution P02			
5	883	120	660			
6	1213	120	690			

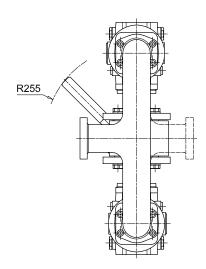

Connections	R
F1	M12
F2	1/2" UNC
F3	M12
F4	1/2" UNC

50.8

T2 plug = Connection for differential indicator

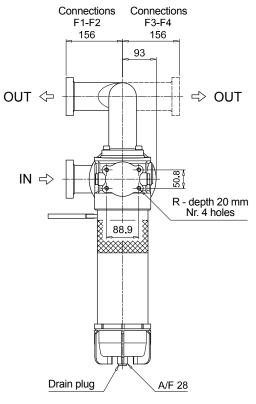

H2 - Recommended clearance space for maintenance

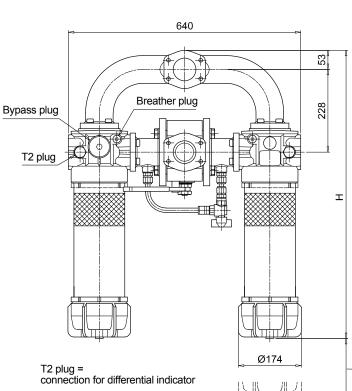

Breather plug

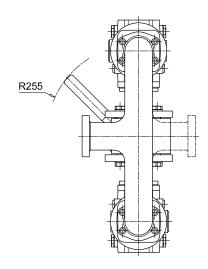

R255

LMD401

Length 4						
Connections	R					
F1	M12					
F2	1/2" UNC					
F3	M12					
F4	1/2" UNC					

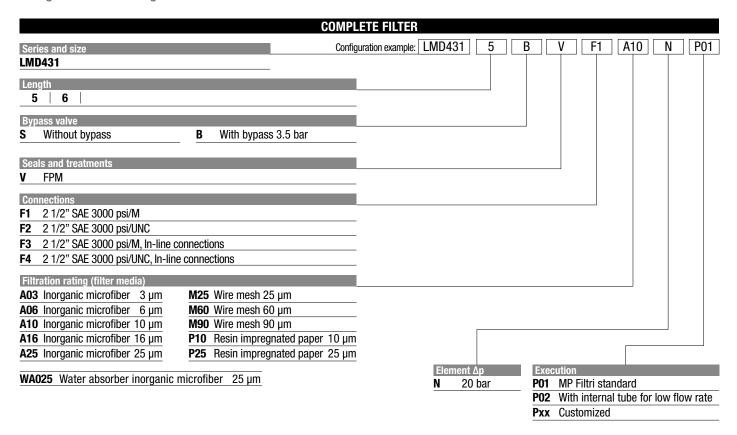


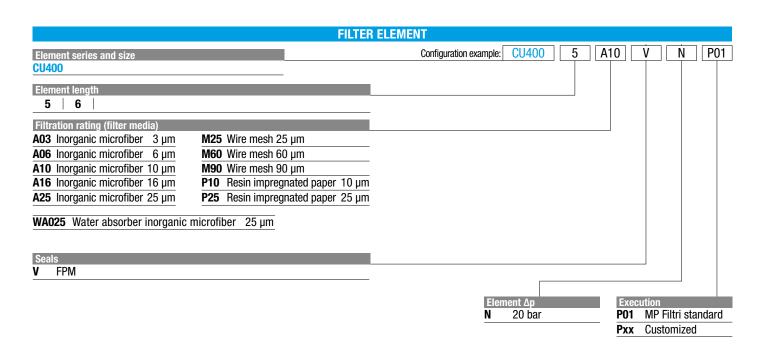



LMD401

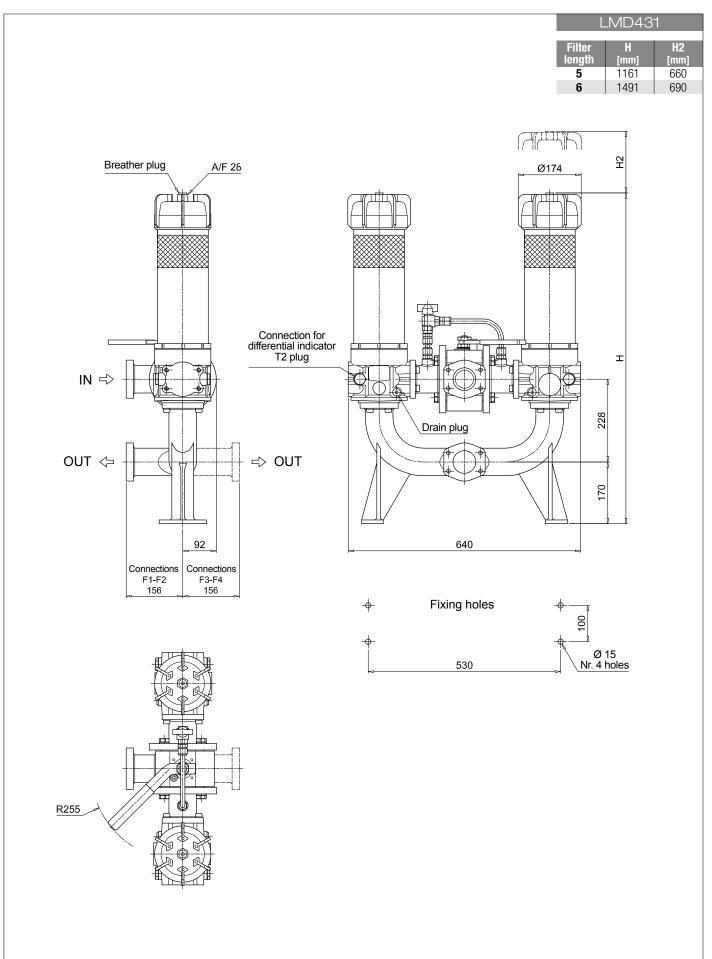
Length 5 - 6						
Filter length	H [mm]	H2 [mm] Execution P01 P02				
5	1044	120	660			
6	1374	120	690			

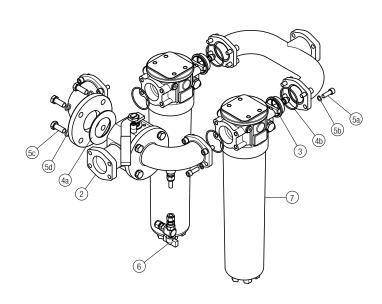
Connections	R
F1	M12
F2	1/2" UNC
F3	M12
F4	1/2" UNC

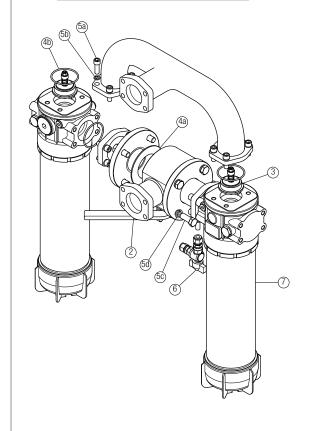


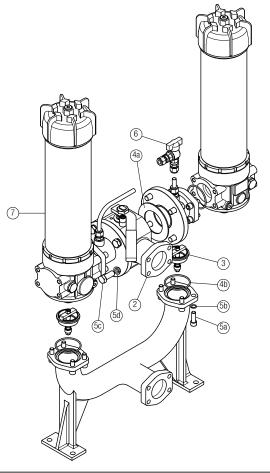


LMD 431


Designation & Ordering code


	See page 686				
DEA	Electrical differential indicator		DTA	Electronic differential indicator	
DEM	Electrical differential indicator		DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator		DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator	_			
		PLUGS			See page 706
T2	Differential indicator plug	_			
<u>T2</u>	Differential indicator plug	-			




Order number for spare parts

LMD 401 LMD 431

	Q.ty: 1 pc.		Q.ty: 2 pcs.	Q.ty: 1 pc.	Q.ty: 1 pc.	Q.ty: 1 pc.	Q.ty: 2 pcs.
Item:		2	3	4 (4a ÷ 4b)	5 (5a ÷ 5d)	6	7
Filter series	3-way ball valve PN 16 2 1/2" SAE 3000 psi/M 2 1/2" SAE 3000 psi/UNC		One-way valve	Seal Kit	Threaded fasteners kit	Kit ball valve with hose fitting	Filter See order table
LMD 400-401-431	02001440	02001441	02001429	02050399	02049062	02025043	LMP400xF2

LMD 951 series

Maximum working pressure up to 1.6 MPa (16 bar) - Flow rate up to 1200 l/min

LMD 951 general information

Description

Technical data

Low & Medium Pressure filters

Duplex

Maximum working pressure up to 1.6 MPa (16 bar) Flow rate up to 1200 l/min

LMD950 is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 1200 I/min
- Base-mounting design, for ease of the replacement of the filter element
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Filter housing materials

- Head: Anodized Aluminium
- Housing: Anodized Aluminium
- Manifolds: Welded Painted black
- Bypass valve: Steel
- 3-way ball valve: Steel body Stainless steel ball
- Check valve: Cast Iron body AISI 304 leaf

Pressure

- SAE + DIN Flange
- Test pressure: 2.5 MPa (25 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Number of filter elements

LMD 951: 2 filter elements CU950-3

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

FPM series V

Temperature

From -25° C to +110° C

Connections

- LMD 951: In-line Inlet/Outlet
- Same side

Note

LMD 951 filters are provided for vertical mounting

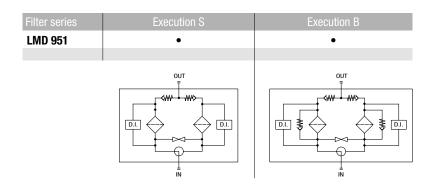
Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]			
	DN 80 DN 100	DN 80 DN 100			
LMD 951	102 130	62 66			

GENERAL INFORMATION LMD 951

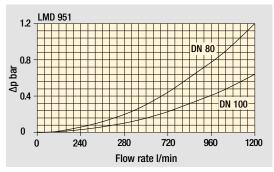
FILTER ASSEMBLY SIZING Flow rates [I/min]

			Filter element design - N Series					
Filter series Le	ength	A03	A06	A10	A16	A25	M25 M60 M90	
LMD 951	3	853	884	995	1066	1096	1233	

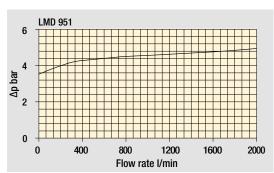

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

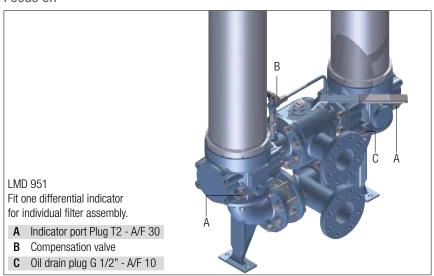

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

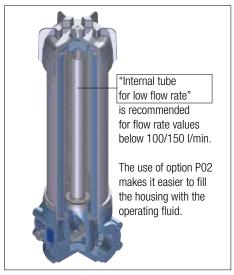
Hydraulic symbols



Pressure drop Bypass valve

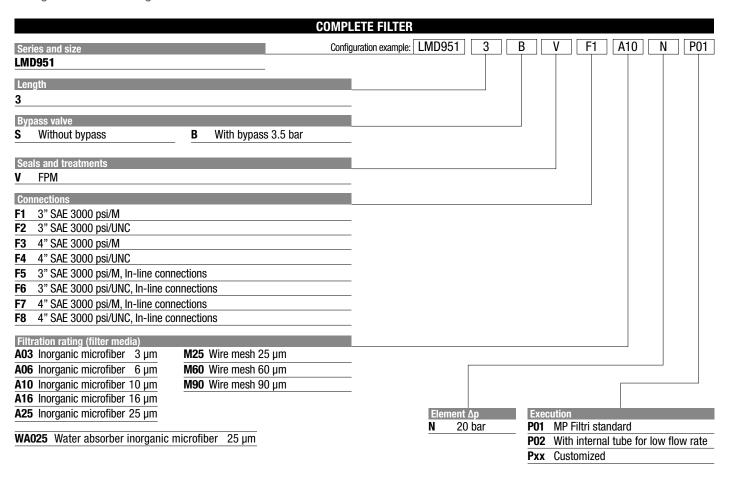
pressure drop

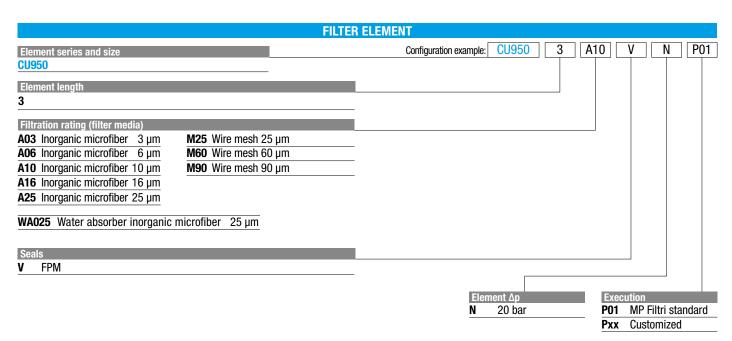




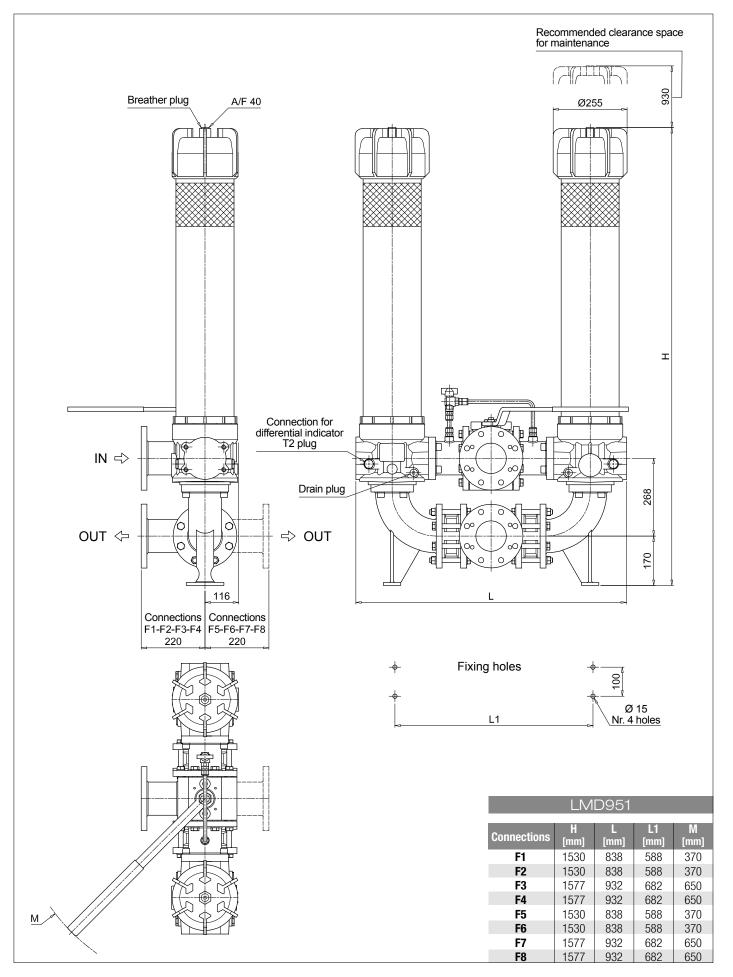
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

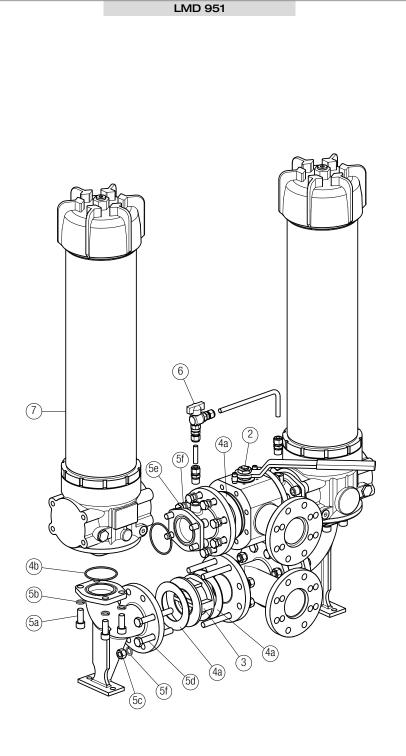
Focus on Execution P02





LMD 951


Designation & Ordering code


	RS	See page 686			
DEA	Electrical differential indicator		DTA	Electronic differential indicator	
DEM	Electrical differential indicator		DVA	Visual differential indicator	
DLA	Electrical / visual differential indicator	-	DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator				
		PLUGS			See page 706
T2	Differential indicator plug				

12 Differential indicator plug

1 SPARE PARTS

Order number for spare parts

Item 7: for complete filter code and spare parts, see LMP 950 - 951 series chapter

- Quantity: filter spare parts: 2 pcs. filter seal kit: 2 pcs.

	Q.ty:	1 pc.	Q.ty: 2 pcs.	Q.ty: 1 pc.	Q.ty: 1 pc.	Q.ty: 1 pc.	Q.ty: 2 pcs.
Item:		2	3	4	5 (5a ÷ 5f)	6	7
Filter series LMD 951	3-way ball valve PN 16		One-way valve	Seal Kit		G 1/2" Ball Valve Kit with straight fittings	Filter
F1 - F2 - F5 - F6 / D1 - D3 (3" SAE / DIN PN16 DN 80)		3" SAE 3000 psi/UNC 02001438	02001418	02050388	02049056	00005040	LMP9513xVF1xxxNP01
F3 - F4 - F7 - F8 / D2 - D4 (4" SAE / DIN PN16 DN 100)		4" SAE 3000 psi/UNC 02001439	02001419	02050389	02049057	02025043	LMP9513xVF3xxxNP01

DIN 24550 Filter element according to DIN 24550

LDP & LDD series

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 360 l/min

MP 900-901 series

Maximum working pressure up to 3 MPa (30 bar) - Flow rate up to 2000 I/min

1P 902-903 series

Maximum working pressure up to 2 MPa (20 bar) - Flow rate up to 3000 I/min

LDP & LDD series

Filter element according to DIN 24550

Maximum working pressure up to 6 MPa (60 bar) - Flow rate up to 360 l/min

LDP & LDD GENERAL INFORMATION

Filter element according to DIN 24550

Descriptions

Low & Medium Pressure filters

Maximum working pressure up to 6 MPa (60 bar) Flow rate up to 360 l/min

LDP is a range of versatile low pressure filter for transmission, protection of sensitive components in low pressure hydraulic systems and filtration of the coolant into the machine tools.

They are also suitable for the off-line filtration of small reservoirs. They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/2", for a maximum return flow rate of 360 l/min
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Visual, electrical and electronic differential clogging indicators

Common applications:

Delivery lines, in low pressure industrial equipment or mobile machines

LDD is a range of versatile low pressure duplex filter with integrated changeover function to allow the filter element replacement without the system shut-down.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Female threaded connections up to 1 1/2" and flanged connections up to 1 1/2", for a maximum flow rate of 360 l/min
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Balancing valve integrated in the changeover lever, to equalize the housing pressure before the switch
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Optional sampling ports, to get samples of fluid or to connect additional instrument to the system
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Systems where shut-down causes high costs
- Systems where shut-down causes safety issues

Technical data

Filter housing materials

- Head: Aluminium
- Bowl: Cataphoretic painted steel
- Bypass valve: AISI 304 Polyamide

Pressure

- Test pressure: 9 MPa (90 bar)
- Burst pressure: 21 MPa (210 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 6 MPa (60 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

∆p element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25° C to +110° C

Connections

Inlet/Outlet In-Line

Note

LDP - LDD filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]
LDP 016	2.0	1.2
LDP 025	3.0	1.6
LDP 040	5.0	2.2
LDD 016	9.3	3.6
LDD 025	9.5	4.1
LDD 040	11.3	4.8

GENERAL INFORMATION LDP & LDD

Filter element according to DIN 24550

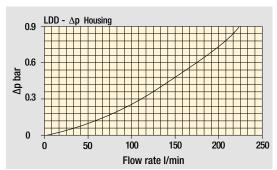
FILTER ASSEMBLY SIZING Flow rates [I/min]

	Filter element design - N Series										
Filter series	A03	A06	A10	A16	A25	M25	M60	M90	P10	P25	
LDP 016	83	91	178	198	222	350	353	358	295	309	
LDP 025	124	134	227	245	265	357	358	358	319	330	
LDP 040	173	191	274	284	311	359	360	361	332	337	
LDD 016	68	73	120	130	140	189	190	192	169	174	
LDD 025	93	98	142	149	157	191	192	192	178	181	
LDD 040	118	126	161	165	175	192	192	193	182	184	

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

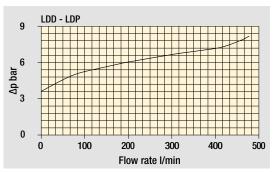
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.


You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

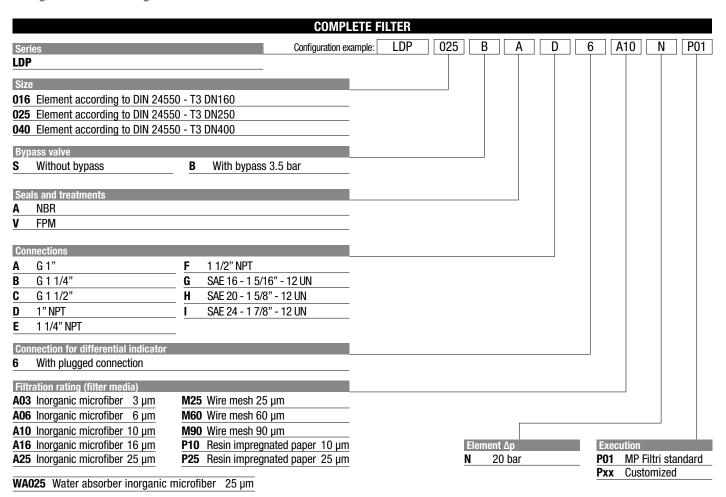
Hydraulic symbols

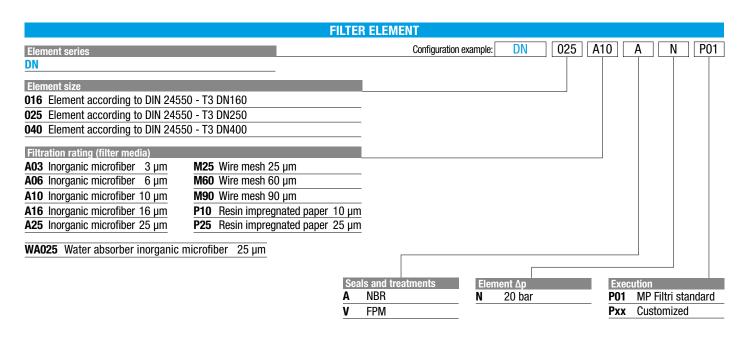
Filter series	Execution S	Execution B	Execution S	Execution B
LDP 016	•	•	-	-
LDP 025	•	•	-	-
LDP 040	•	•	-	-
LDD 016	-	-	•	•
LDD 025	-	-	•	•
LDD 040	-	-	•	•
	D.I. IN	DJ. N	D.I.	OUT TO THE PART OF



Flow rate I/min

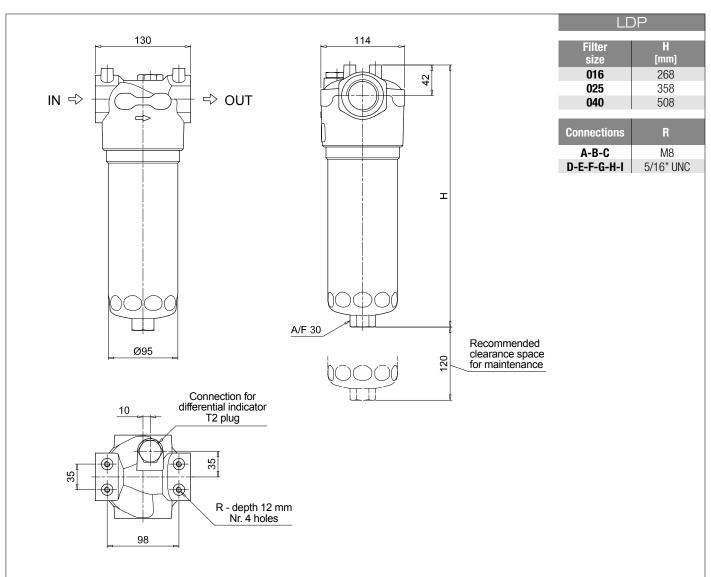
 $\begin{array}{c} Pressure \ drop \\ \text{Filter housings } \Delta p \ pressure \ drop \end{array}$


Bypass valve pressure drop



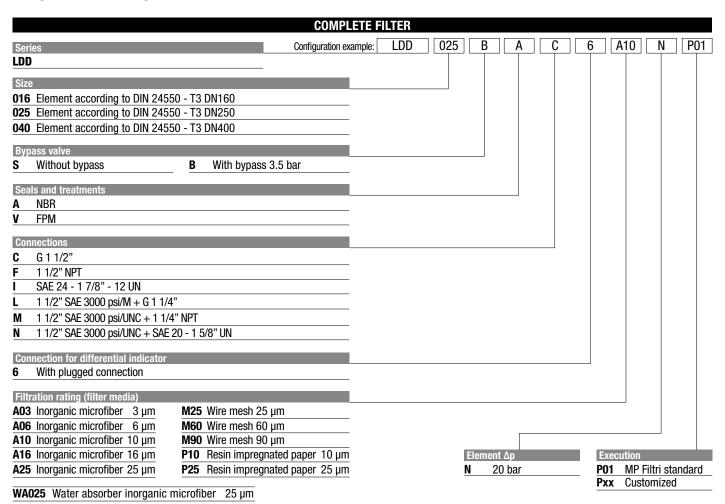
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

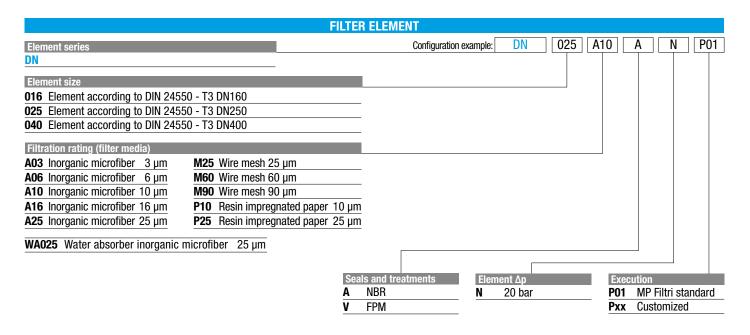
Designation & Ordering code



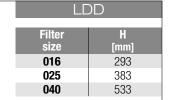
	CLOGGING INDICATORS						
D	A Electrical differential indicator		DTA	Electronic differential indicator			
D	M Electrical differential indicator		DVA	Visual differential indicator			
D	A Electrical / visual differential indicator	_	DVM	Visual differential indicator			
D	E Electrical / visual differential indicator						
		PLUGS			See page 706		

2 Differential indicator plug

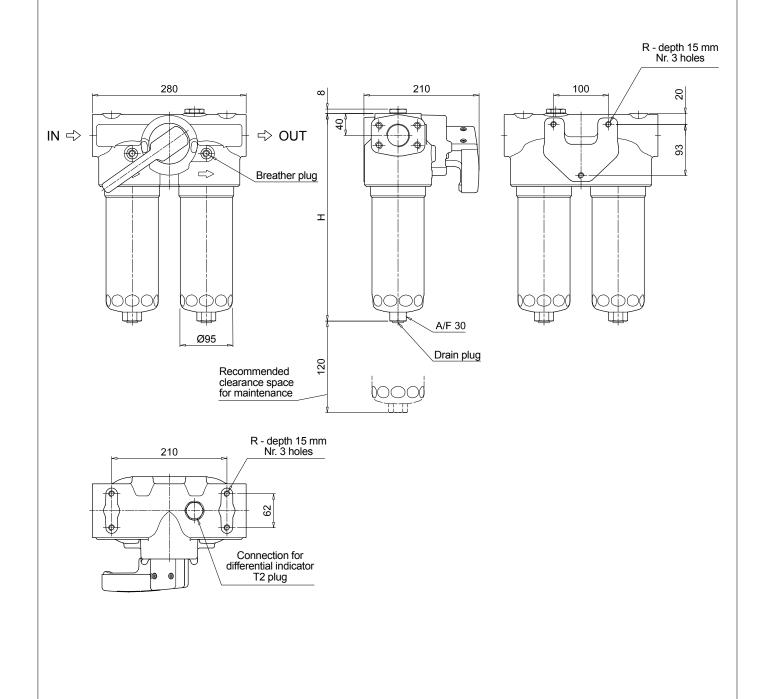




Designation & Ordering code

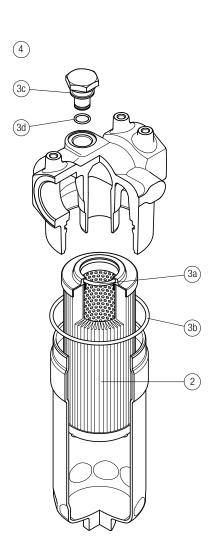


	CLUGGING INDICATORS						
DEA	Electrical differential indicator	DTA	Electronic differential indicator				
DEM	Electrical differential indicator	DVA	Visual differential indicator				
DLA	Electrical / visual differential indicator	DVM	Visual differential indicator				
DLE	Electrical / visual differential indicator						
		PLUGS		See page 706			
T2	Differential indicator plug	_					


(()) MPALTRI

OLOGONIO INDIGATORI

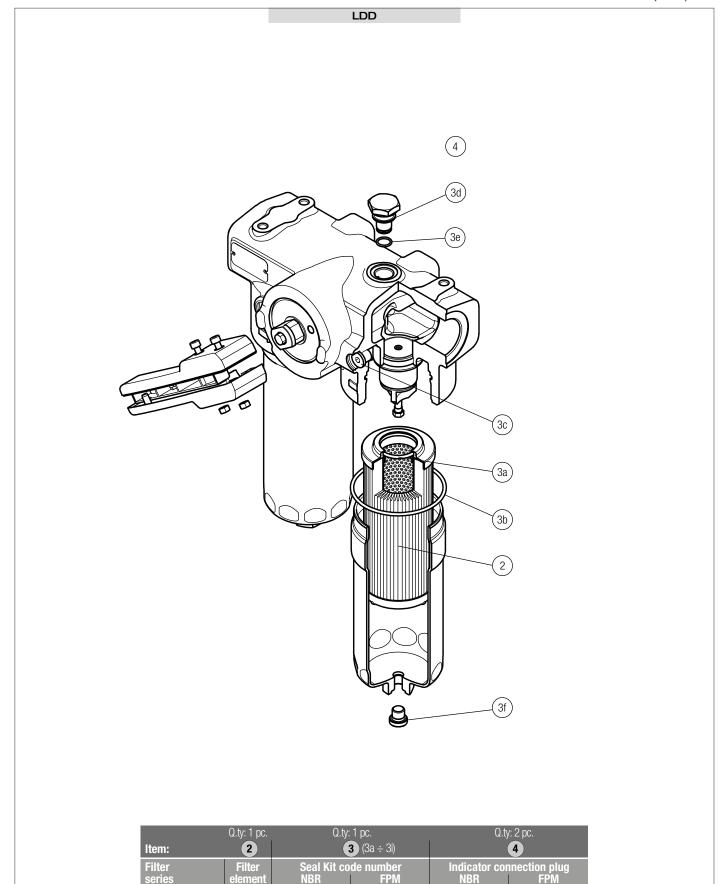
Connections	R
C	M10
F-I	3/8" UNC
L	M10
M - N	3/8" LINC



SPARE PARTS

Filter element according to DIN 24550

Order number for spare parts



	Q.ty: 1 pc.	Q.ty:	1 pc.	Q.ty: 1 pc.		
Item:	2		(3a ÷ 3d)	(4	
Filter series	Filter element	Seal Kit co NBR	de number FPM	Indicator cor NBR	nnection plug FPM	
LDP	See order table	02050435 02050436		T2H	T2V	

Filter element according to DIN 24550

Order number for spare parts

02050672

T2H

T2V

02050671

See order table

LDD

LMP 900-901 series

Filter element according to DIN 24550

Maximum working pressure up to 3 MPa (30 bar) - Flow rate up to 2000 l/min

LMP 900-901 general information

Filter element according to DIN 24550

Description

Low & Medium Pressure filters

Maximum working pressure up to 3 MPa (30 bar) Flow rate up to 2000 l/min

LMP900 is a range of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- Flanged connections up to 4", for a maximum flow rate of 2000 I/min
- In line or 90° connections, to meet any type of application
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid.
 For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems
- Lubrication systems

Technical data

Filter housing materials

- Head: Anodized aluminium
- Housing: Anodized aluminium
- Manifolds: Anodized aluminium
- Bypass valve: Steel

Pressure

- Test pressure: 4.5 MPa (45 bar)
- Burst pressure: 12 MPa (120 bar)
- Pulse pressure fatigue test: 1 000 000 cycles with pressure from 0 to 3 MPa (30 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Number of filter elements

LMP 900-1: 1 filter element CU900 LMP 900-2: 2 filter elements CU900

Filter elements

Filter element according to DIN 24550

Size: 1000

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Connections

LMP 900: In-line Inlet/Outlet LMP 901: 90° Inlet/Outlet

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Note

LMP 900 - 901 filters are provided for vertical mounting

Weights [kg] and volumes [dm3]

Filter series	Weights [kg]	Volumes [dm³]		
	Length 1 2	Length 1 2		
LMP 900-901	19.2 30.4	16 24		

GENERAL INFORMATION LMP 900-901

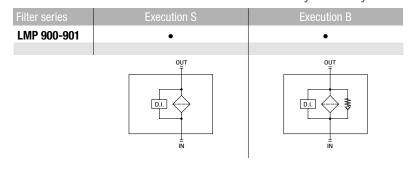
Filter element according to DIN 24550

FILTER ASSEMBLY SIZING Flow rates [I/min]

			Filter element design - N Series					
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	
LMP 900	1	706	877	1264	1291	1444	1803	
LIVIP 900	2	1100	1264	1556	1573	1668	1867	
	1	i.						
LMP 901	1	715	899	1337	1369	1552	2000	
LIVIP 901	2	1147	1337	1689	1710	1828	2081	

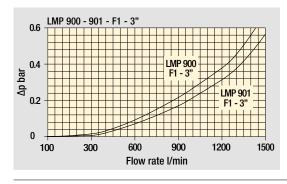
Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

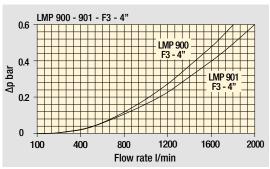
The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.

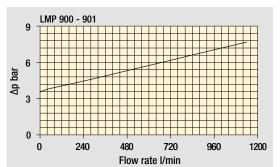

For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.

LMP 900-901 Length 2

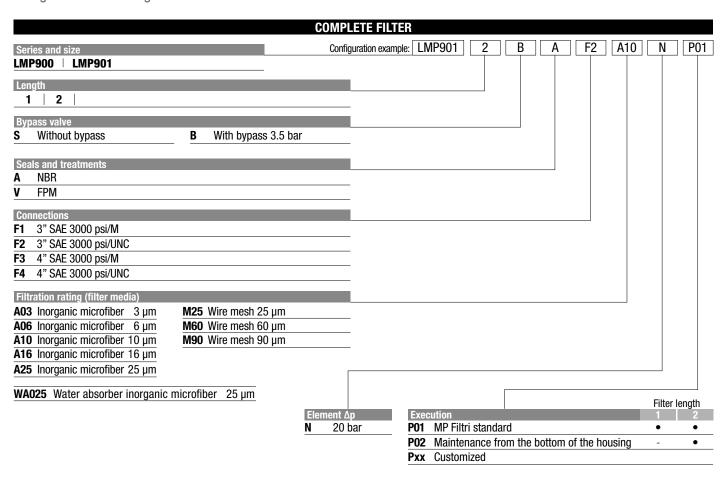

LMP 900 - 901 length 2 filters are equipped with two 1000 size cartridges in compliance with DIN 24550 standard, connected by means of a removable coupling spigot.

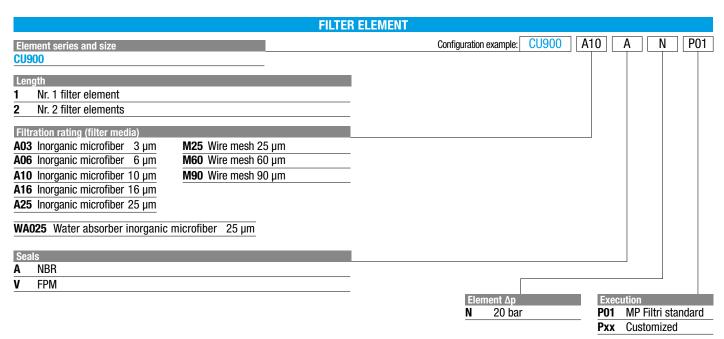

Hydraulic symbols

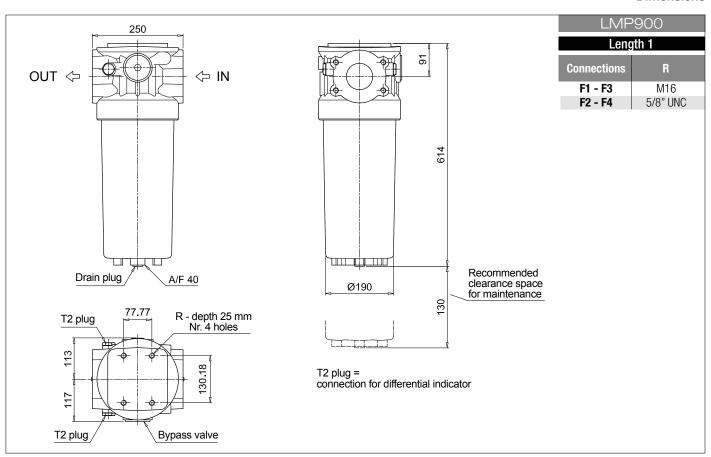

Pressure drop

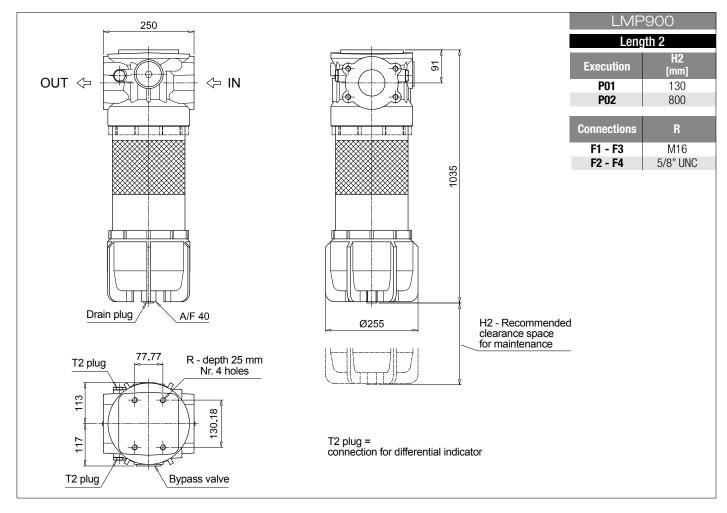
Filter housings Δp pressure drop

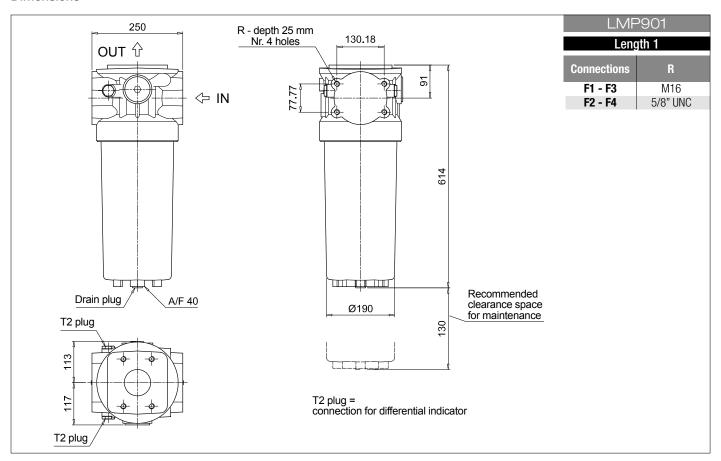
Bypass valve pressure drop

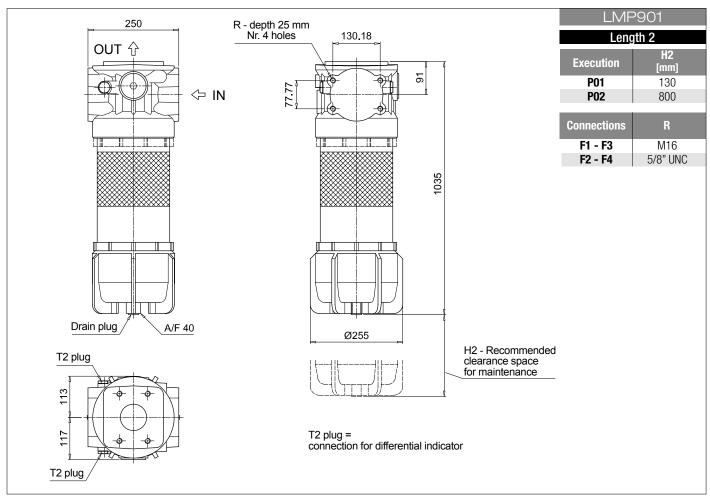



The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

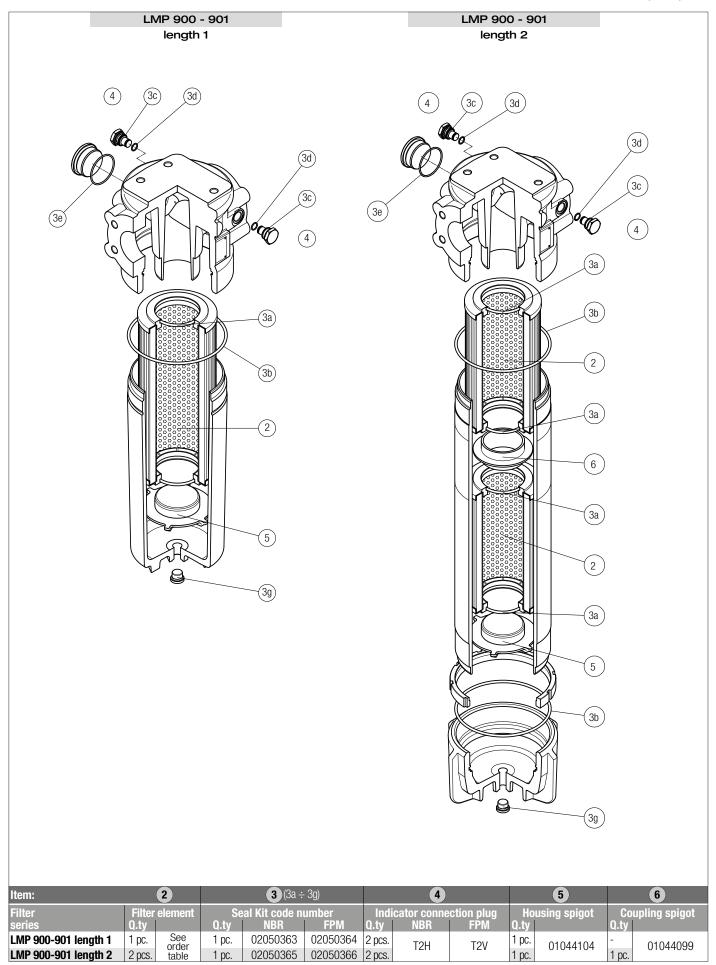

LMP 900-901


Designation & Ordering code





	CLOGGING INDICATORS				
DEA	Electrical differential indicator		DTA	Electronic differential indicator	
DEM	DEM Electrical differential indicator			DVA Visual differential indicator	
DLA	Electrical / visual differential indicator		DVM	Visual differential indicator	
DLE	Electrical / visual differential indicator				
	PLUGS	See page 706		ACCESSORIES	See page 438
<u>T2</u>	Differential indicator plug - Filter length 1 - 2		CFA	Retaining clamp - Filter length 2	



SPARE PARTS LMP 900-901

Order number for spare parts

LMP 902-903 series

Filter element according to DIN 24550

Maximum working pressure up to 2 MPa (20 bar) - Flow rate up to 3000 l/min

Filter element according to DIN 24550

Description

Low & Medium Pressure filters

Maximum working pressure up to 2 MPa (20 bar) Flow rate up to 3000 I/min

LMP902 and LMP903 are ranges of low pressure filter with large filtration surface mainly suitable for lubrication, off-line filtration of the reservoirs and filtration equipment.

Multiple LMP950 filters are connected to a manifold to reduce the pressure drop caused by the filter media and to increase the life time of the filter element.

They are directly connected to the lines of the system through the hydraulic fittings.

Available features:

- 4" flanged connections, for a maximum flow rate of 3000 I/min
- Filter element designed in accordance with DIN 24550 regulation
- Fine filtration rating, to get a good cleanliness level into the system
- Water removal elements, to remove the free water from the hydraulic fluid. For further information, see the Contamination Management document and the dedicate leaflet.
- Bypass valve, to relieve excessive pressure drop across the filter media
- Vent ports, to avoid air trapped into the filter going into the system
- Drain ports, to remove the fluid from the housing prior the maintenance work
- Visual, electrical and electronic differential clogging indicators

Common applications:

- Off-line filtration of reservoirs
- Filtration systems

Technical data

Filter housing materials

- Head: Anodized aluminium
- Housing: Anodized aluminium
- Manifolds: Welded Phosphatized steel
- Bypass valve: Steel
- Size 1000 filter elements complying with DIN 24550 standard

Pressure

- Test pressure: 3.5 MPa (35 bar)

Bypass valve

- Opening pressure 350 kPa (3.5 bar) ±10%
- Other opening pressures on request.

Number of filter elements

LMP 902: 4 filter elements CU900 LMP 903: 6 filter elements CU900

Filter elements

Filter element according to DIN 24550

Size: 1000

Δp element type

- Microfibre filter elements series N: 20 bar
- Fluid flow through the filter element from OUT to IN

Connections

LMP 902-903: In-line Inlet/Outlet

Seals

- Standard NBR series A
- Optional FPM series V

Temperature

From -25 °C to +110 °C

Note

LMP 902 - 903 filters are provided for vertical mounting

Weights [kg] and volumes [dm³]

Filter series	Weights [kg]	Volumes [dm³]
	Length 2	Length 2
LMP 902	89.6	58
LMP 903	129.2	87

GENERAL INFORMATION LMP 902-903

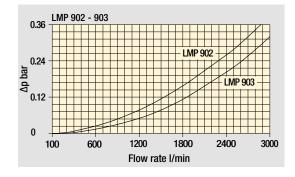
Filter element according to DIN 24550

FILTER ASSEMBLY SIZING Flow rates [I/min]

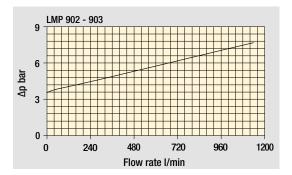
		Filter element design - N Series						
Filter series	Length	A03	A06	A10	A16	A25	M25 M60 M90	
LMP 902	2	2217	2576	3241	3282	3506	3987	
LMP 903	2	2838	3170	3720	3755	3926	4278	

Maximum flow rate for a complete low and medium pressure filter with a pressure drop $\Delta p = 0.7$ bar.

The reference fluid has a kinematic viscosity of 30 mm²/s (cSt) and a density of 0.86 kg/dm³.


For different pressure drop or fluid viscosity we recommend to use our selection software available on www.mpfiltri.com.

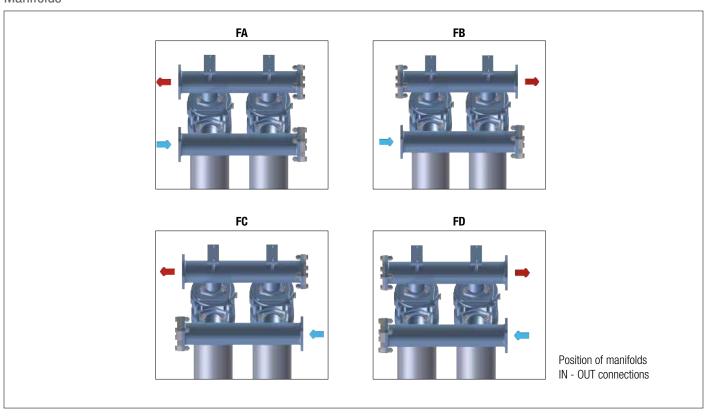
You can also calculate the right size using the formulas present on the FILTER SIZING paragraph at the beginning of the full catalogue or at the beginning of the filter family brochure. Please, contact our Sales Department for further additional information.


Hydraulic symbols

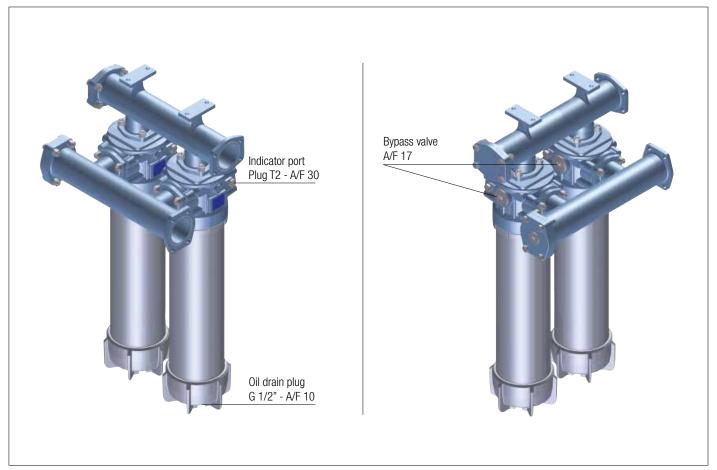
Filter series	series Execution S Execution B		Execution S	Execution B	
LMP 902	•	•	-	-	
LMP 903	-	-	•	•	
	IN II	IN II	IN I	IN II	

Pressure drop
Filter housings Δp pressure drop

Bypass valve pressure drop

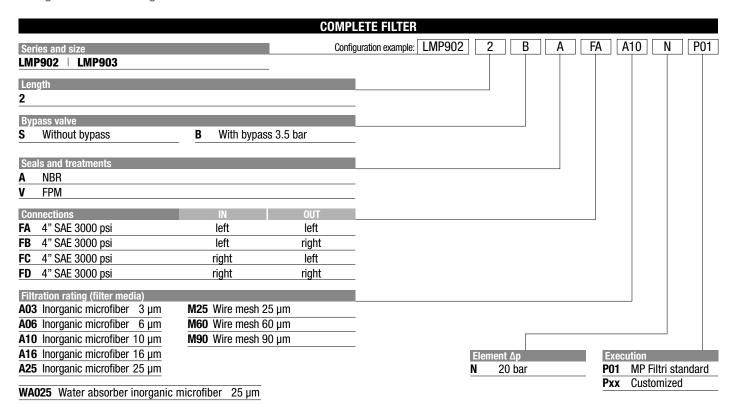


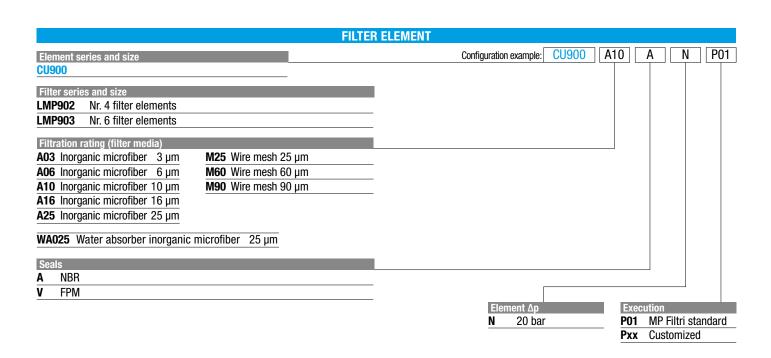
The curves are plotted using mineral oil with density of 0.86 kg/dm³ in compliance with ISO 3968. Δp varies proportionally with density.

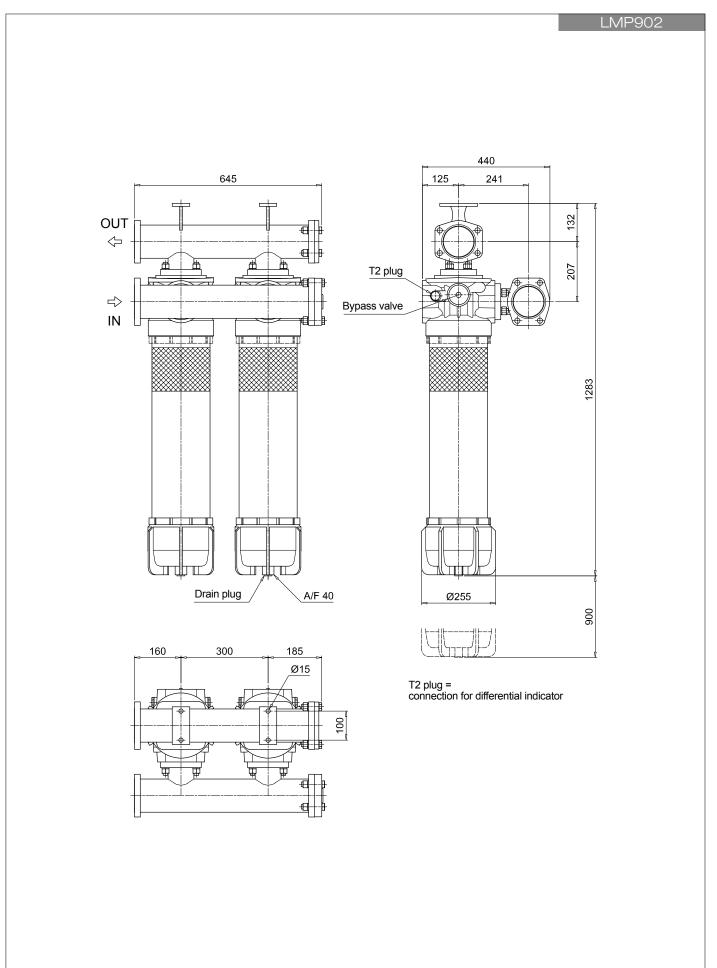

LMP 902-903 general information

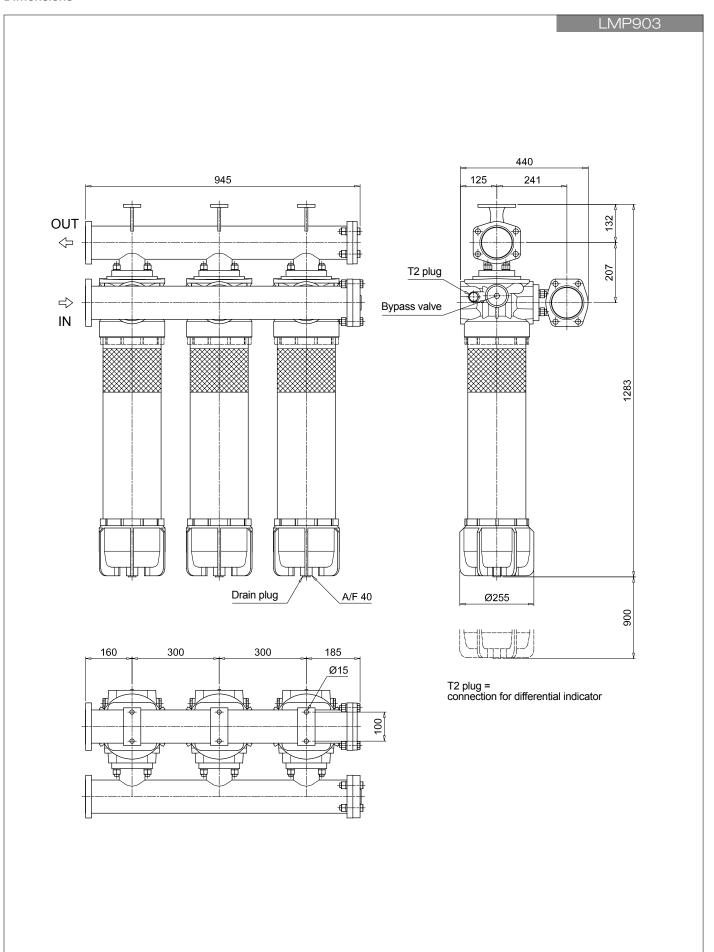
Filter element according to DIN 24550

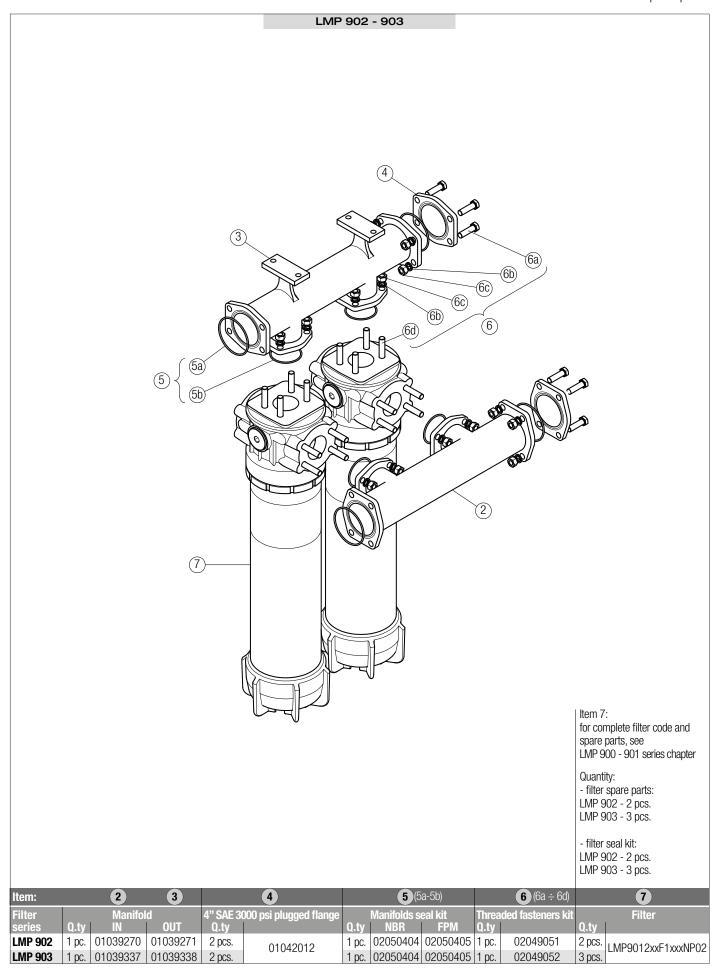
Manifolds


Focus on

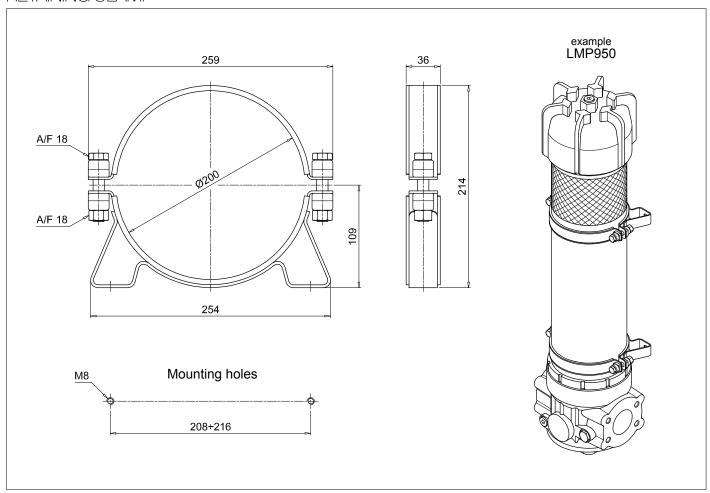


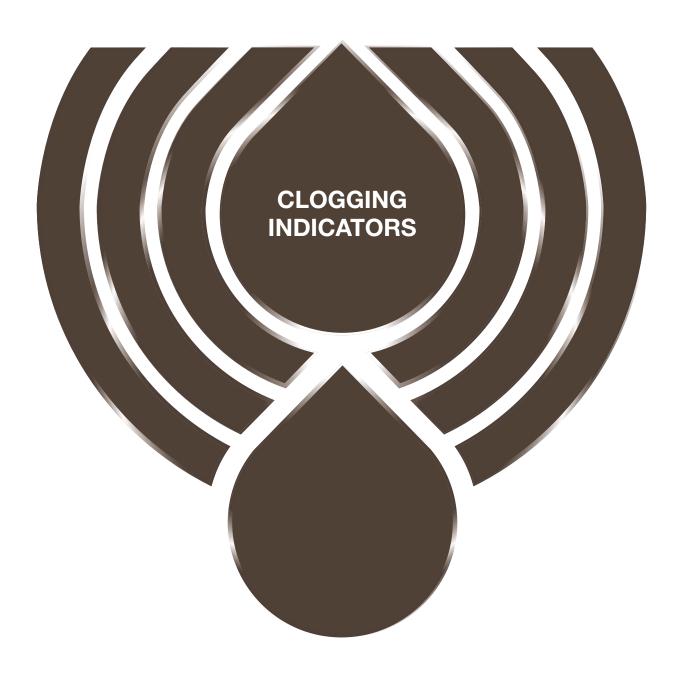

LMP 902-903 Filter element according to DIN 24550


Designation & Ordering code


	CLOGGING INDICATORS					
DEA	Electrical differential indicator	_	DTA	Electronic differential indicator		
DEM	Electrical differential indicator		DVA	Visual differential indicator		
DLA	Electrical / visual differential indicator	_	DVM	Visual differential indicator		
DLE	Electrical / visual differential indicator					
		PLUGS			See page 706	
T2	Differential indicator plug	_				

SPARE PARTS LMP 902-903


Order number for spare parts



Accessories

RETAINING CLAMP

Series		Configuration example:	CFA	20 M P01	П
	etaining clamp				_
Size		L			
20					
Screw		L			
M M	letric	-			
Execution		ı			
	IP Filtri standard				

Clogging indicators are devices that check the life time of the filter elements. They measure the pressure drop through the filter element directly connected to the filter housing.

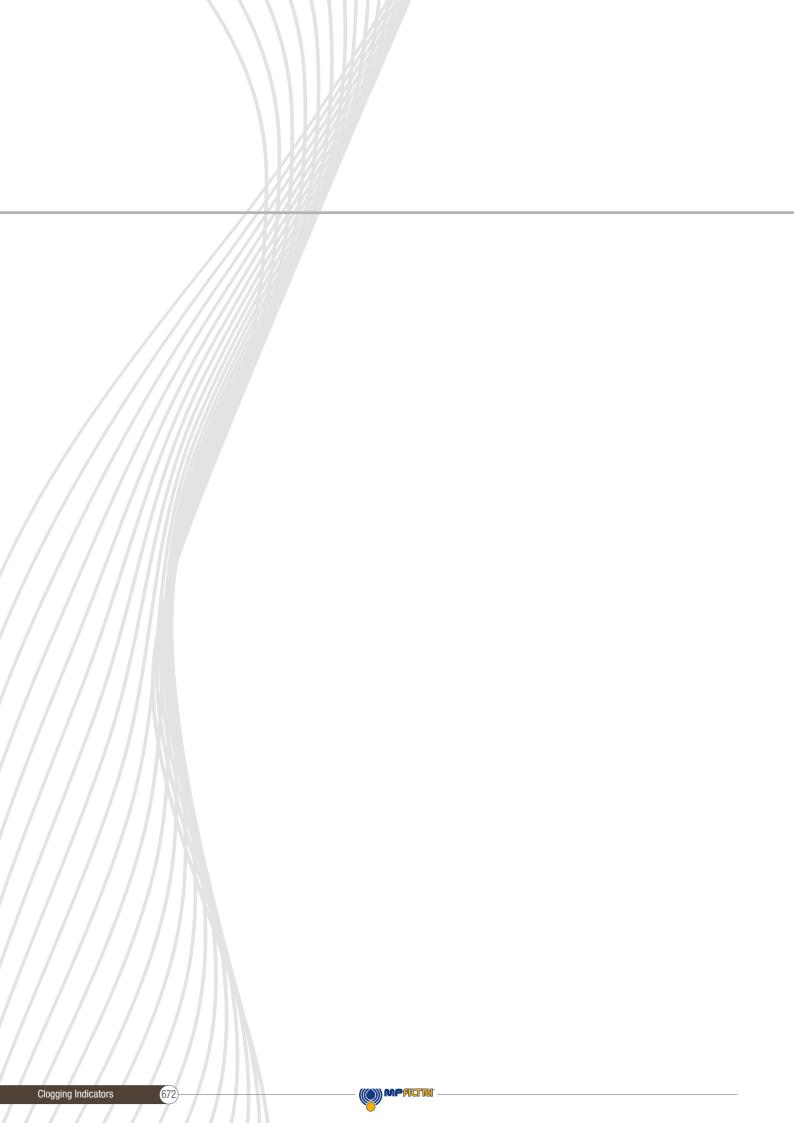
These devices trip when the clogging of the filter element causes a pressure drop increasing across the filter element.

Filter elements are efficient only if their Dirt Holding Capacity is fully exploited. This is achieved by using filter housings equipped with clogging indicators.

The indicator is set to alarm before the element becomes fully clogged.

MP Filtri can supply indicators of the following designs:

- Vacuum switches and gauges
- Pressure switches and gauges
- Differential pressure indicators


These type of devices can be provided with a visual, electrical or both signals. The electronic differential pressure clogging indicator is also available. It provides both analogical 4-20 mA output and digital warning (75% of clogging) and alarm (clogging) outputs.

In the following pages you can find a reference guide about the types of clogging indicators available in the different families of MP Filtri's Hydraulic Filtration range of products.

Clogging Indicators

DESIGNATION, ORDERING CODES & TECHNICAL DATA

INDEX

	Pag
QUICK REFERENCE GUIDE	674
ORDERING CODES	
SUCTION FILTERS	679
RETURN FILTERS	680
TIETOTIA TELETO	000
RETURN / SUCTION FILTERS	682
SPIN-ON FILTERS	684
SYIN-UN FILIENS	004
LOW & MEDIUM PRSSURE FILTERS	686
LIIOU PREGOLIDE EILTERO	007
HIGH PRESSURE FILTERS	687
STAINLESS STEEL HIGH PRESSURE FILTERS	688
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	689
FILTERS FOR POTEINTIALLY EXPLOSIVE ATMOSPHERE	009
TECHNICAL DATA	
VACUUM INDICATORS	690
BAROMETRIC INDICATORS	692
DIFFERENTIAL INDICATORS	696
PHIGS	706

QUICK REFERENCE GUIDE

Filter family	Filter se	ries	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
SUCTION FILTERS	With bypass valve	ELIXIR* SFEX060-080-110-160	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SUC	0.3 bar	SF2 250 - 350 SF2 500 - 501 - 503 - 504 - 505 SF2 510 - 535 - 540	WA20P01 WR20P01	VEA21xA50P01	VLA21xA51P01 VLA21xA52P01 VLA21xA53P01 VLA21xA71P01
	With bypass 1.75 bar	ELIXIR* RFEX060-080-110-160	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	Without bypass	ELIXIR* RFEX060-080-110-160	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass 1.75 bar	MDH 250	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01 DVS12HP01	BEA15HA50P01 BEM15HA41P01 DES12HA10P01 DES12HA30P01 DES12HA80P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
RETURN FILTERS	With bypass 3 bar	MDH 250	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVS25HP01	BEA20HA50P01 BEM20HA41P01 DES25HA10P01 DES25HA30P01 DES25HA80P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
ŒΨ	With bypass 1.75 bar	MPFX MPTX MPF MPT MPH	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	With bypass 3 bar With bypass 2.5 bar	MPFX MPTX MPF MPT MPH	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass 4.5 bar	MPLX	DVA20xP01	DEA20xA50P01 DEM20XX10P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01
	With bypass 2.4 bar	FRI	DVM20xP01	DEM20XX20P01 DEM20XX30P01 DEM20XX35P01	DLE20xA50P01 DLE20xF50P01 DTA20xF70P01

QUICK REFERENCE GUIDE

Filte fami	r ly Filter s	eries	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		MRSX 116 - 165 - 166 Suction line	VVB20P01 VVS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
RETURN / SUCTION FILTERS	With bypass valve 2.5 bar	MRSX 116 - 165 - 166 Return line	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01	BEA20HA50P01 BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01
	With bypass valve 2.5 bar	LMP 124 MULTIPORT	BVA25P01 BVR25P01 BVP20HP01 BVQ20HP01 DVA20xP01 DVM20xP01	BEA20HA50P01 BEM20HA41P01 BET25HF10P01 BET25HF30P01 BET25HF50P01 DEA20xA50P01 DEM20XX10P01 DEM20XX20P01 DEM20XX30P01 DEM20XX35P01	BLA20HA51P01 BLA20HA52P01 BLA20HA53P01 BLA20HA71P01 DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01
	Suction line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350	WB20P01 WS20P01	VEB21AA50P01	VLB21AA51P01 VLB21AA52P01 VLB21AA53P01 VLB21AA71P01
SPIN-ON	Return line	MPS 050 - 070 - 100 - 150 MPS 200 - 250 - 300 - 350 MST 050 - 070 - 100 - 150	BVA14P01 BVR14P01 BVP15HP01 BVQ15HP01	BEA15HA50P01 BEM15HA41P01	BLA15HA51P01 BLA15HA52P01 BLA15HA53P01 BLA15HA71P01
	In-line	MPS 051 - 071 - 101 - 151 MPS 301 - 351 MSH 050 - 070 - 100 - 150	DVA12xP01 DVM12xP01	DEA12xA50P01 DEM12xAxxP01	DLA12xA51P01 DLA12xA52P01 DLA12xA71P01 DLE12xA50P01 DLE12xF50P01 DLE20xF50P01 DLE20xF50P01 DTA12xA70P01 DTA12xF70P01 DTA20xA70P01 DTA20xF70P01

Filter family	Filter s	series	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
		ELIXIR° LFEX060-080-110-160	DVS25HP01	DES25HA10P01 DES25HA30P01 DES25HA80P01	
LOW & MEDIUM PRESSURE FILTERS	With bypass valve 3.5 bar	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA20xP01 DVM20xP01	DEA20xA50P01 DEM20xx10P01 DEM20xx20P01 DEM20xx30P01 DEM20xx35P01	DLA20xA51P01 DLA20xA52P01 DLA20xA71P01 DLE20xA50P01 DLE20xF50P01 DTA20xF70P01
LOW & N PRESSURE		ELIXIR° LFEX060-080-110-160	DVS40HP01	DES40HA10P01 DES40HA30P01 DES40HA80P01	
	Without bypass valve	LMP 110 - 112 - 116 - 118 - 119 MULTIPORT LMP 120 - 122 - 123 MULTIPORT LMP 210 - 211 - LDP LMP 400 - 401 & 430 - 431 LMP 900 - 901 LMP 902 - 903 LMP 950 - 951 LMP 952 - 953 - 954 LMD 211 - 400 - 401 - 431 - 951 - LDD	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01 DTA50xF70P01
SSURE 3S	With bypass valve 6 bar	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA50xP01 DVM50xP01	DEA50xA50P01 DEM50xx10P01 DEM50xx20P01 DEM50xx30P01 DEM50xx35P01	DLA50xA51P01 DLA50xA52P01 DLA50xA71P01 DLE50xA50P01 DLE50xF50P01
HIGH PRESSURE FILTERS	Without bypass valve	FMP 039 - 065 - 135 - 320 FHP 010 - 011 - 065 - 135 - 350 - 351 - 500 FMMX 050 FMM 050 - 150 FHA 051 FHM 006 - 007 - 010 - 050 - 065 - 135 - 320 - 500 FHB 050 - 135 - 320 FHF 325 FHD 021 - 051 - 326 - 333	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEA70xA50P01 DEA95xA50P01 DEM70xx10P01 DEM70xx20P01 DEM70xx30P01 DEM70xx35P01 DEM95xx10P01 DEM95xx20P01 DEM95xx30P01 DEM95xx35P01	DLA70xA51P01 DLA70xA52P01 DLA70xA71P01 DLA95xA51P01 DLA95xA52P01 DLA95xA71P01 DLE70xA50P01 DLE70xF50P01 DLE95xA50P01 DLE95xF50P01 DLE95xF50P01

QUICK REFERENCE GUIDE

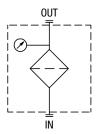
					ordering codes
Filter family	Filter seri	es	Visual indicators	Electrical indicators	Electronic / Electrical-Visual indicators
STAINLESS STEEL HIGH PRESSURE FILTERS	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01	DEZ50xA50P01	DLZ50xA50P01 DLZ70xA50P01 DLZ95xA50P01
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01	DEZ70xA50P01 DEZ95xA50P01	
	With bypass valve 6 bar	FZP 039 - 136 FZB 039 FZM 039 FZD 051	DVX50xP01 DVY50xP01	DEX50xA50P01	DLX50xA51P01 DLX50xA52P01
	Without bypass valve	FZP 039 - 136 FZB 039 FZM 039 FZD 010 - 021 - 051	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEX70xA50P01 DEX95xA50P01	DLX70xA51P01 DLX70xA52P01 DLX95xA51P01 DLX95xA52P01
FILTERS FOR POTENTIALLY EXPLOSIVE ATMOSPHERE	With bypass valve 6 bar	FMMX 050 FMM 050 -150	DVA50xP01 DVM50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01	
	Without bypass valve	FMMX 050 FMM 050 -150	DVA70xP01 DVA95xP01 DVM70xP01 DVM95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01	
	With bypass valve 6 bar	FZP 039 - 136	DVX50xP01 DVY50xP01	DEH50xA48P01 DEH50xA49P01 DEH50xA70P01	
	Without bypass valve	FZP 039 - 136	DVX70xP01 DVX95xP01 DVY70xP01 DVY95xP01	DEH70xA48P01 DEH70xA49P01 DEH70xA70P01 DEH95xA48P01 DEH95xA49P01 DEH95xA70P01	
	With bypass valve 6 bar	FZH 012 - 040	DVZ50xP01		
	Without bypass valve	FZH 012 - 040	DVZ70xP01 DVZ95xP01		

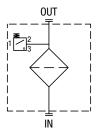
Suitable indicator types

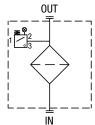
V ACUUM INDICATORS

Vacuum indicators are used on the Suction line to check the efficiency of the filter element.

They measure the pressure downstream of the filter element.


Standard items are produced with R 1/4" EN 10226 connection.

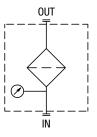

Available products with R 1/8" EN 10226 to be fitted on MPS series.

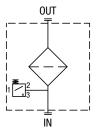

Vacuum indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "V".

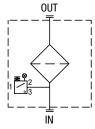
Example:

B AROMETRIC INDICATORS

Pressure indicators are used on the Return line to check the efficiency of the filter element.


They measure the pressure upstream of the filter element.

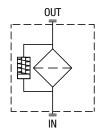

Standard items are produced with R 1/8" EN 10226 connection.

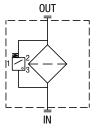

Barometric indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "B"

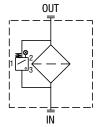
Example:

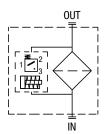
D IFFERENTIAL INDICATORS

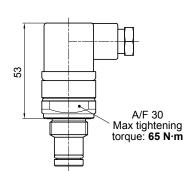
Differential indicators are used on the Pressure line to check the efficiency of the filter element.


They measure the pressure upstream and downstream of the filter element (differential pressure).


Standard items are produced with special connection G 1/2" size.

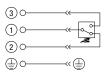

Also available in Stainless Steel models. Differential indicators are identified in the Hydraulic Filtration catalogue and in the Quick Reference Guide table by the letter "D"


xampie:



Designation & Ordering code

	DIFFERENTIAL INDICATORS			
Series	Configuration example 1:	DE M	20 H	F 50 P01
DE Electrical differential indicator	Configuration example 2:	DL E	50 V	A 71 P01
DL Electrical/Visual differential indicator	Configuration example 3:	DT A	20 H	F 70 P01
DT Electronic differential indicator				
DV Visual differential indicator	Configuration example 4:	DV M	50 V	P01
Type DE DL DT	DV			
A Standard type • • •	A With automatic reset			
M With wired electrical connection •	M With manual reset			
E For high power supply - • -	S With automatic reset			
S Compact version •				
D				
Pressure setting 12 1.2 bar				
20 2.0 bar				
50 5.0 bar				
70 7.0 bar				
95 9.5 bar				
Seals H HNBR				
V FPM				
	·			
Thermostat	DEA DEM DLA DLE	DT		
A Without				
F With thermostat				
Electrical connections	DEA DEM DES DLA	DLE DT		
40. Compation AMD Company of the 4.5				
10 Connection AMP Superseal series 1.5	- • -			
Connection AMP Superseal series 1.5Connection AMP Timer Junior				
20 Connection AMP Timer Junior30 Connection Deutsch DT-04-2-P				
 20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 	- •			
20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 50 Connection EN 175301-803	- • - • • •			
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with 	- •			
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with 	- •		Opt	
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection IEC 61076-2-101 D (M12) 			P01	MP Filtri standard
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection EC 61076-2-101 D (M12) Connection IEC 61076-2-101 D (M12), black base with 				MP Filtri standard
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection IEC 61076-2-101 D (M12) 		• - 	P01	MP Filtri standard
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection EC 61076-2-101 D (M12) Connection IEC 61076-2-101 D (M12), black base with 		• - 	P01	MP Filtri standard
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection IEC 61076-2-101 D (M12) Connection IEC 61076-2-101 D (M12), black base with Connection Stud #10-32 UNF 	- •	• - 	P01 Pxx	MP Filtri standard Customized
20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 50 Connection EN 175301-803 51 Connection EN 175301-803, transparent base with 52 Connection EN 175301-803, transparent base with 70 Connection IEC 61076-2-101 D (M12) 71 Connection IEC 61076-2-101 D (M12), black base v 80 Connection Stud #10-32 UNF		• - 	P01	MP Filtri standard Customized
 Connection AMP Timer Junior Connection Deutsch DT-04-2-P Connection Deutsch DT-04-3-P Connection EN 175301-803 Connection EN 175301-803, transparent base with Connection EN 175301-803, transparent base with Connection IEC 61076-2-101 D (M12) Connection IEC 61076-2-101 D (M12), black base with Connection Stud #10-32 UNF 	- •	• - 	P01 Pxx	MP Filtri standard Customized
20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 50 Connection EN 175301-803 51 Connection EN 175301-803, transparent base with 52 Connection EN 175301-803, transparent base with 70 Connection IEC 61076-2-101 D (M12) 71 Connection IEC 61076-2-101 D (M12), black base v 80 Connection Stud #10-32 UNF Series T2 Differential Indicator plug • • • • • • • • • • • • • • • • • • •	-	• - 	P01 Pxx	MP Filtri standard Customized
20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 50 Connection EN 175301-803 51 Connection EN 175301-803, transparent base with 52 Connection EN 175301-803, transparent base with 70 Connection IEC 61076-2-101 D (M12) 71 Connection IEC 61076-2-101 D (M12), black base v 80 Connection Stud #10-32 UNF Series T2 Differential Indicator plug T4 Differential Indicator plug Seals	-	• - 	P01 Pxx	MP Filtri standard Customized
20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 50 Connection EN 175301-803 51 Connection EN 175301-803, transparent base with 52 Connection EN 175301-803, transparent base with 70 Connection IEC 61076-2-101 D (M12) 71 Connection IEC 61076-2-101 D (M12), black base v 80 Connection Stud #10-32 UNF Series T2 Differential Indicator plug T4 Differential Indicator plug Seals A NBR	- •	• - 	P01 Pxx	MP Filtri standard Customized
20 Connection AMP Timer Junior 30 Connection Deutsch DT-04-2-P 35 Connection Deutsch DT-04-3-P 50 Connection EN 175301-803 51 Connection EN 175301-803, transparent base with 52 Connection EN 175301-803, transparent base with 70 Connection IEC 61076-2-101 D (M12) 71 Connection IEC 61076-2-101 D (M12), black base v 80 Connection Stud #10-32 UNF Series T2 Differential Indicator plug T4 Differential Indicator plug Seals	-	• - 	P01 Pxx	MP Filtri standard Customized


DEA*50 Electrical Differential Indicator Connection: EN 175301-803 Ordering code DE A 12 x A 50 P01 1.2 bar ±10% DE A 20 x A 50 P01 2.0 bar ±10% 5.0 bar ±10% DE A 50 x A 50 P01 DE A 70 x A 50 P01 7.0 bar ±10% 9.5 bar ±10% DE A 95 x A 50 P01

Hydraulic symbol

Electrical symbol

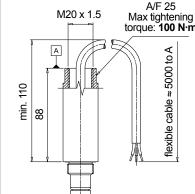
Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver - Seal: HNBR - FPM

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 har

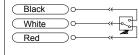
From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943


- Degree protection: IP66 according to EN 60529 IP69K according to ISO 20653

Electrical data

EN 175301-803 - Electrical connection: - Resistive load: 0.2 A / 115 Vdc

DEH*48 Hazardous Area Electrical Differential Indicator Connection via three-core cable - fitting M20x1.5


Settings	Ordering code
2.0 bar ±10%	DE H 20 x A 48 P01
5.0 bar ±10%	DE H 50 x A 48 P01
7.0 bar ±10%	DE H 70 x A 48 P01
M20 x 1.5	A/F 25 Max tightening torque: 100 N·m

Hydraulic symbol

Electrical symbol

Certification / Approvals: ATEX, IECEx, EAC TR CU, INMETRO Certification included as standard

Materials

- Body: AISI 316L - Contacts: Rhodium - Seal: FPM - MFQ

Technical data

420 bar - Max working pressure: - Proof pressure: 630 har - Burst pressure: 1260 bar

- Working temperature: From -60 °C to +125 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943 - Temperature class: T4 (135 °C) and T6 (85 °C) - Degree of protection: IP 66/67/68 according to EN 60529

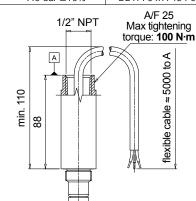
- Connection type: Three-core cable, fitting M20x1.5

SPCO/SPDT (Hermetically sealed - Volt-free contacts) Contact type:

Electrical data

Connection via three-core cable - fitting M20x1.5

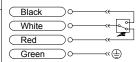
- Resistive Load: 830 mA / 24 Vdc - 180 mA / 110 Vac - Electrical Ratings: Ui = 30 Vdc / Ii = 250 mA / Pi = 1.3 W Available ATEX product: II 1 GD Ex ia IIC T6 Ga -60° C \leq Ta \leq 80 $^{\circ}$ C


Ex ia IIC T4 Ga -60° C \leq Ta \leq 125 $^{\circ}$ C II 2 GD Ex db IIC T6* Gb Ex tb IIIC T85 $^{\circ}$ C* Db $(Tamb := -60^{\circ}C to +70^{\circ}C)^{*} IP66/67$ alternative T/Class and ambients T4, T135°C

 $(Tamb = -60^{\circ}C \text{ to } +120^{\circ}C)$

DEH*49 Hazardous Area

Electrical Differential Indicator Connection via four-core cable - fitting 1/2" NPT


Settings	Ordering code
2.0 bar ±10%	DE H 20 x A 49 P01
5.0 bar ±10%	DE H 50 x A 49 P01
7.0 bar ±10%	DE H 70 x A 49 P01

Hydraulic symbol

Electrical symbol

Certification / Approvals: ATEX, IECEx, EAC TR CU, INMETRO, UL/CSA Class I Division 1 Groups A-D, UL/CSA Class II Division 1 Groups E-G Certification included as standard

Materials

- Body: AISI 316L - Contacts: Rhodium FPM - MFQ - Seal:

Technical data

420 bar - Max working pressure: - Proof pressure: 630 har 1260 bar - Burst pressure:

From -60 °C to +120 °C : ATEX, IECEx, EAC TR CU, INMETRO From -60 °C to +105 °C : UL/CSA - Working temperature:

Mineral oils, Synthetic fluids - Compatibility with fluids: HFA, HFB, HFC according to ISO 2943

T4 (135 °C) and T6 (85 °C) IP 66/67/68 according to EN 60529 - Temperature class: - Degree of protection:

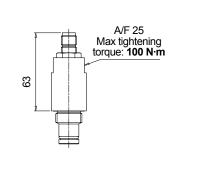
- Connection type:Four-core cable, fitting 1/2" NPT

SPCO/SPDT (Hermetically sealed - Volt-free contacts) Contact type:

Electrical data

Connection via four-core cable - fitting 1/2" NPT Resistive Load: 830 mA / 24 Vdc - 180 mA / 110 Vac - Resistive Load:

- Max voltage 150 Vac/dc - Power


II 1 GD Ex ia IIC T6 Ga -60°C ≤ Ta ≤ 80°C Ex ia IIC T4 Ga -60°C ≤ Ta ≤ 125°C - Available ATEX product:

II 2 GD Ex db IIC T6* Gb Ex tb IIIC T85°C* Db $(Tamb := -60^{\circ}C \text{ to } +70^{\circ}C)^{*} \text{ IP66/67}$ alternative T/Class and ambients T4, T135°C

 $(Tamb = -60^{\circ}C \text{ to } +120^{\circ}C)$

DEH*70 Hazardous Area Electrical Differential Indicator Connection IEC 61076-2-101 D (M12)

	. ,
Settings	Ordering code
2.0 bar ±10%	DE H 20 x A 70 P01
5.0 bar ±10%	DE H 50 x A 70 P01
7.0 bar +10%	DF H 70 x A 70 P01

Hvdraulic symbol

Electrical symbol

Materials

Seal:

AISI 316L with internal engineered resin switch - Body: Contacts:

Rhodium FPM - MFQ

Technical data

Max working pressure:
Proof pressure: 420 bar 630 bar Burst pressure: 1260 bar

Working temperature: Compatibility with fluids: From -60 °C to +80 °C Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943

Temperature class: T6 (85 °C)

Degree of protection: IP 66/67 according to EN 60529

Connection type:IEC 61076-2-101 D (M12)

Contact type: SPCO/SPDT (Hermetically sealed - Volt-free contacts)

Electrical data

Connection IEC 61076-2-101 D (M12)

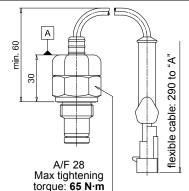
830 mA / 24 Vdc - 180 mA / 110 Vdc Resistive Load:

Ui = 30 VdcElectrical Ratings:

Available ATEX product:

Ui = 30 Vdc Ii = 250 mA Pi = 1.3 W II 1 GD Ex ia IIC T6 Ga -60°C ≤ Ta ≤ 80°C Ex ia IIC T4 Ga -60°C ≤ Ta ≤ 125°C II 2 GD Ex db IIC T6* Gb Ex tb IIIC T85°C* Db (Tamb : = -60°C to +70°C)* IP66/67 * alternative T/Class and ambients T4, T135°C

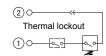
 $(Tamb = -60^{\circ}C \text{ to } +120^{\circ}C)$



Certification / Approvals: ATEX, IECEx, EAC TR CU, INMETRO Certification included as standard

DEM*10

Electrical Differential Indicator Connection: AMP Superseal series 1.5


Settings	Ordering code
1.2 bar ±10%	DE M 12 x x 10 P01
2.0 bar ±10%	DE M 20 x x 10 P01
5.0 bar ±10%	DE M 50 x x 10 P01
7.0 bar ±10%	DE M 70 x x 10 P01
9.5 bar ±10%	DE M 95 x x 10 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

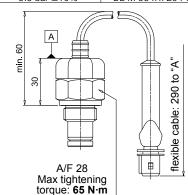
Technical data

- Max working pressure: 420 bar 630 bar - Proof pressure: - Burst pressure: 1260 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943

- Degree protection: IP66 according to EN 60529

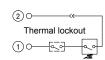
Electrical data


- Electrical connection: AMP Superseal series 1.5 - Resistive load: 0.2 A / 115 Vdc

- Switching type: Normally open contacts (NC on request) Normally open up to 30 °C (option "F") - Thermal lockout:

DEM*20

Electrical Differential Indicator AMP Time junior


7 avii Tiirio jariioi				
Settings	Ordering code			
1.2 bar ±10%	DE M 12 x x 20 P01			
2.0 bar ±10%	DE M 20 x x 20 P01			
5.0 bar ±10%	DE M 50 x x 20 P01			
7.0 bar ±10%	DE M 70 x x 20 P01			
9.5 bar ±10%	DE M 95 x x 20 P01			

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

- Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

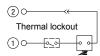
Technical data

420 bar - Max working pressure: 630 bar - Proof pressure: Burst pressure: 1260 bar

- Working temperature: From -25 °C to +110 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943 - Degree protection: IP66 according to EN 60529

Electrical data

AMP Time junior - Electrical connection: - Resistive load: 0.2 A / 115 Vdc


Switching type: Normally open contacts (NC on request) Normally open up to 30 °C (option "F") - Thermal lockout:

DEM*30 **Electrical Differential Indicator** Deutsch DT-04-2-P Ordering code DE M 12 x x 30 P01 DE M 20 x x 30 P01 DE M 50 x x 30 P01 DE M 70 x x 30 P01 1.2 bar ±10% 2.0 bar ±10% 5.0 bar ±10% 7.0 bar ±10% 9.5 bar ±10% DE M 95 x x 30 P01 9 ш flexible cable: 240 to 30 A/F 28 Max tightening torque: 65 N·m

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver - Seal: HNBR - FPM

Technical data

- Max working pressure: 420 bar 630 bar - Proof pressure: 1260 bar - Burst pressure:

From -25 °C to +110 °C - Working temperature: Mineral oils, Synthetic fluids - Compatibility with fluids: HFA, HFB, HFC according to ISO 2943

- Degree protection: IP66 according to EN 60529

Electrical data

Deutsch DT-04-2-P - Electrical connection: - Resistive load: 0.2 A / 115 Vdc

Normally open contacts (NC on request) - Switching type: - Thermal lockout: Normally open up to 30 °C (option "F")

DEM*35 Electrical Differential Indicator Deutsch DT-04-3-P Ordering code DE M 12 x x 35 P01 DE M 20 x x 35 P01 DE M 50 x x 35 P01 DE M 70 x x 35 P01 DE M 95 x x 35 P01 1.2 bar ±10% 2.0 bar ±10% 5.0 bar ±10% 7.0 bar ±10% 9.5 bar ±10% 9 E flexible cable: 240 to "A" 30

A/F 28 Max tightening torque: 65 N·m

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

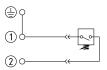
From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

- Degree protection: IP66 according to EN 60529

Electrical data

- Electrical connection: Deutsch DT-04-3-P - Resistive load: 0.2 A / 115 Vdc - Switching type: SPDT contact


- Thermal lockout: Normally open up to 30 °C (option "F")

DES*10		
Electrical Differential Indicator AMP Superseal series 1.5		
Settings	Ordering code	
1.2 bar ±10%	DE S 12 H A 10 P01	
2.5 bar ±10%	DE S 25 H A 10 P01	
4.0 bar ±10%	DE S 40 H A 10 P01	
38	A/F 19 Max tightening torque: 20 N·m	

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

Brass - Polyamide - Internal parts:

- Contacts: Silver **HNBR** - Seal:

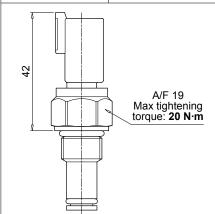
Technical data

- Max working pressure: 16 bar 24 bar - Proof pressure: - Burst pressure: 48 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943 - Degree protection: IP67 according to EN 60529

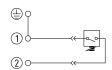
Electrical data


AMP Superseal series 1.5 - Electrical connection:

- Resistive load: 0.2 A / 24 Vdc

Normally open contacts (NC on request) - Switching type:

DES*30 Electrical Differential Indicator Deutsch DT-04-2-P


Settings	Ordering code
1.2 bar ±10%	DE S 12 H A 30 P01
2.5 bar ±10%	DE S 25 H A 30 P01
4.0 bar ±10%	DE S 40 H A 30 P01

Hydraulic symbol

Electrical symbol

Materials

- Body: Brass

- Internal parts: Brass - Polyamide

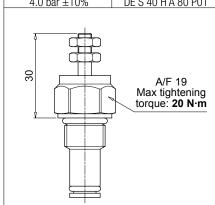
- Contacts: Silver - Seal: HNBR

Technical data

Max working pressure: 16 barProof pressure: 24 barBurst pressure: 48 bar

Working temperature:
 Compatibility with fluids:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFA, HFB, HFC according to ISO 2943

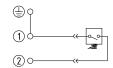
- Degree protection: IP67 according to EN 60529


Electrical data

Electrical connection: Deutsch DT-04-2-P
 Resistive load: 0.2 A / 24 Vdc

- Switching type: Normally open contacts (NC on request)

DES*80 Electrical Differential Indicator Stud #10-32 UNF


0122 :: 10 02 011			
Settings	Ordering code		
1.2 bar ±10%	DE S 12 H A 80 P01		
2.5 bar ±10%	DE S 25 H A 80 P01		
4.0 bar ±10%	DE S 40 H A 80 P01		

Hydraulic symbol

Electrical symbol

Materials

Body: BrassInternal parts: Brass - Polyamide

- Contacts: Silver - Seal: HNBR

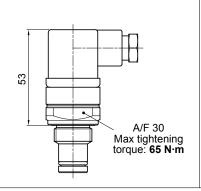
Technical data

Max working pressure: 16 barProof pressure: 24 barBurst pressure: 48 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

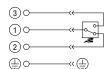
- Degree protection: IP67 according to EN 60529


Electrical data

Electrical connection: Stud #10-32 UNF
 Resistive load: 0.2 A / 24 Vdc

- Switching type: Normally open contacts (NC on request)

DEX*50 Electrical Differential Indicator Connection: EN 175301-803


0.111	
Settings	Ordering code
1.2 bar ±10%	DE X 12 x A 50 P01
2.0 bar ±10%	DE X 20 x A 50 P01
5.0 bar ±10%	DE X 50 x A 50 P01
7.0 bar ±10%	DE X 70 x A 50 P01
9.5 bar ±10%	DE X 95 x A 50 P01

Hydraulic symbol

Electrical symbol

Materials

Body: AISI 316L
Base: Black polyamide
Contacts: Silver
Seal: HNBR - MFQ

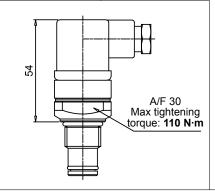
Technical data

Max working pressure:
 Proof pressure:
 Burst pressure:
 Working temperature:
 Working temperature:

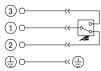
420 bar
630 bar
1260 bar
From -25 °C to +110 °C

Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943
 Degree protection: IP66 according to ISO 20653

Electrical data


- Electrical connection: EN 175301-803 - Resistive load: 0.2 A / 115 Vdc

Electrical Differential Indicator Connection: EN 175301-803 Ordering code 1.2 bar ±10% DE Z 12 x A 50 P01 DE Z 20 x A 50 P01 2.0 bar ±10% DE Z 50 x A 50 P01 5.0 bar ±10% 7.0 bar ±10% DE Z 70 x A 50 P01 9.5 bar ±10% DE Z 95 x A 50 P01


DEZ*50

Hydraulic symbol

Electrical symbol

Materials

- Body: AISI 316L - Base: Black polyamide - Contacts: Silver - Seal: HNBR - MFQ

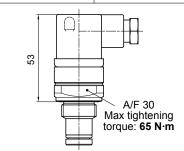
Technical data

700 bar - Max working pressure: 1050 bar - Proof pressure: - Burst pressure: 2100 har

- Working temperature: From -25 °C to +110 °C - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943

IP66 according to EN 60529 - Degree protection: IP69K according to ISO 20653

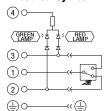
Electrical data


EN 175301-803 - Electrical connection: - Resistive load: 0.2 A / 115 Vdc

DLA*51 - DLA*52

Electrical/Visual Differential Indicator

51: Connection EN 175301-803, transparent base with lamps 24 Vdc **52**: Connection EN 175301-803, transparent base with lamps 110 Vdc


Settings	Ordering code
1.2 bar ±10%	DL A 12 x A xx P01
2.0 bar ±10%	DL A 20 x A xx P01
5.0 bar ±10%	DL A 50 x A xx P01
7.0 bar ±10%	DL A 70 x A xx P01
9.5 bar ±10%	DL A 95 x A xx P01

Hydraulic symbol

Electrical symbol

Materials

- Body: - Base: Transparent polyamide - Contacts: Silver

Brass

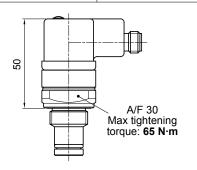
- Seal: HNBR - FPM

Technical data

- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids HFA, HFB, HFC according to ISO 2943

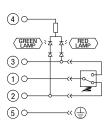
- Degree protection: IP66 according to EN 60529 IP69K according to ISO 20653


Electrical data

- Electrical connection: EN 175301-803 - Type 51 52 - Lamps 24 Vdc 110 Vdc - Resistive load: 1 A / 110 Vdc 1 A / 24 Vdc

DLA*71

Electrical/Visual Differential Indicator Connection IEC 61076-2-101 D (M12), black base with lamps 24 Vdc


Settings	Ordering code
1.2 bar ±10%	DL A 12 x A 71 P01
2.0 bar ±10%	DL A 20 x A 71 P01
5.0 bar ±10%	DL A 50 x A 71 P01
7.0 bar ±10%	DL A 70 x A 71 P01
9.5 bar ±10%	DL A 95 x A 71 P01

Hydraulic symbol

Electrical symbol

Materials

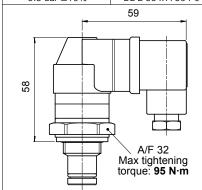
- Body: Brass - Base: Black polyamide - Contacts: Silver HNBR - FPM - Seal:

Technical data

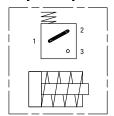
- Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar - Working temperature: From -25 °C to +110 °C

- Compatibility with fluids: Mineral oils, Synthetic fluids HFA. HFB. HFC according to ISO 2943 - Degree protection: IP65 according to EN 60529 IP69K according to ISO 20653

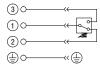
Electrical data


- Electrical connection: IEC 61076-2-101 D (M12) 24 Vdc (black base) - Lamps 0.4 A / 24 Vdc - Resistive load:

Clogging Indicators



DLE*A50 Electrical/Visual Differential Indicator


Without term. Connections. Liv 17 3301-003	
Settings	Ordering code
1.2 bar ±10%	DL E 12 x A 50 P01
2.0 bar ±10%	DL E 20 x A 50 P01
5.0 bar ±10%	DL E 50 x A 50 P01
7.0 bar ±10%	DL E 70 x A 50 P01
9.5 bar ±10%	DL E 95 x A 50 P01

Hydraulic symbol

Electrical symbol

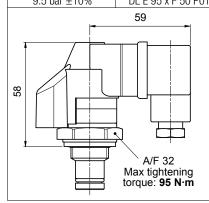
Materials

Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

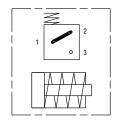
Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

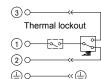
Working temperature:
 Compatibility with fluids:
 Mineral oils, Synthetic fluids
 HFA, HFB, HFC according to ISO 2943


- Degree protection: IP65 according to EN 60529

Electrical data


Electrical connections: EN 175301-803
 Resistive load: 5 A / 250 Vac
 Available the connector with lamps

DLE*F50 Electrical/Visual Differential Indicator


With term. Connections: EN 175301-803 Settings Ordering code 1.2 bar ±10% DL E 12 x F 50 P01 2.0 bar ±10% DL E 20 x F 50 P01 5.0 bar ±10% DL E 50 x F 50 P01 7.0 bar ±10% DL E 70 x F 50 P01 9.5 bar ±10% DL E 95 x F 50 P01

Hydraulic symbol

Electrical symbol

Materials

Body: Brass
Base: Black polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

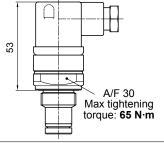
Max working pressure: 420 bar
Proof pressure: 630 bar
Burst pressure: 1260 bar

Working temperature:
 Compatibility with fluids:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

- Degree protection: IP65 according to EN 60529

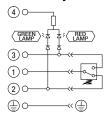
Electrical data


- Electrical connections: EN 175301-803 - Resistive load: 5 A / 250 Vac - Thermal lockout setting: +30 °C

DLX*51 - DLX*52

Electrical/Visual Differential Indicator

51: Connection EN 175301-803, transparent base with lamps 24 Vdc 52: Connection EN 175301-803, transparent base with lamps 110 Vdc


Settings	Ordering code
1.2 bar ±10%	DL X 12 x A 5x P01
2.0 bar ±10%	DL X 20 x A 5x P01
5.0 bar ±10%	DL X 50 x A 5x P01
7.0 bar ±10%	DL X 70 x A 5x P01
9.5 bar ±10%	DL X 95 x A 5x P01

Hydraulic symbol

Electrical symbol

Materials

- Body: AISI 316L

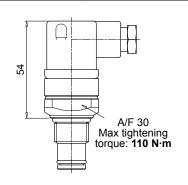
- Base: Transparent polyamide

- Contacts: Silver - Seal: HNBR - MFQ

Technical data

Max working pressure:
 Proof pressure:
 Burst pressure:
 Working temperature:
 Working temperature:

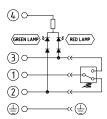
420 bar
630 bar
1260 bar
From -25 °C to +110 °C


- Compatibility with fluids: Mineral oils, Synthetic fluids
HFA, HFB, HFC according to ISO 2943
- Degree protection: IP66 according to EN 60529
IP69K according to ISO 20653

Electrical data

Electrical connection: EN 175301-803
 Type 51 52
 Lamps 24 Vdc 110 Vdc
 Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc

DLZ*51 - DLZ*52 Electrical/Visual Differential Indicator Connection EN 175301-803


Settings	Ordering code
1.2 bar ±10%	DL Z 12 x A 5x P01
2.0 bar ±10%	DL Z 20 x A 5x P01
5.0 bar ±10%	DL Z 50 x A 5x P01
7.0 bar ±10%	DL Z 70 x A 5x P01
9.5 har +10%	DL 7 95 x A 5x P01

Hydraulic symbol

Electrical symbol

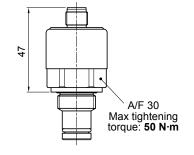
Materials

- Body: AISI 316L - Base: Transpare

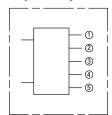
Base: Transparent polyamide
Contacts: Silver
Seal: HNBR - MFQ

Technical data

Max working pressure: 700 barProof pressure: 1050 barBurst pressure: 2100 bar


Working temperature:
 Compatibility with fluids:
 Degree protection:
 From -25 °C to +110 °C
 Mineral oils, Synthetic fluids
 HFA, HFB, HFC according to ISO 2943
 IP66 according to EN 60529
 IP69K according to ISO 20653

Electrical data


- Electrical connection: EN 175301-803
- Type 51 52
- Lamps 24 Vdc 110 Vdc
- Resistive load: 1 A / 24 Vdc 1 A / 110 Vdc

Electronic Differential Indicator Connection: IEC 61076-2-101 D (M12)

Settings	Ordering code
1.2 bar ±10%	DT A 12 x x 70 P01
2.0 bar ±10%	DT A 20 x x 70 P01
5.0 bar ±10%	DT A 50 x x 70 P01
7.0 bar ±10%	DT A 70 x x 70 P01
9.5 bar ±10%	DT A 95 x x 70 P01

Hydraulic symbol

Electrical symbol

10-	\multimap \subset	+24 Vdc	\supset
20	 ○(4 ÷ 20 mA	\supset
30-	- ○(75% - N.O. Digital output	\bigcup
40-	- ○(100% - N.O. Digital output	\bigcup
(5)0	 ○(0 Vdc	$\overline{}$

Materials

Body: Brass
Internal parts: Brass - Polyamide
Contacts: Silver
Seal: HNBR - FPM

Technical data

Max working pressure: 420 barProof pressure: 630 barBurst pressure: 1260 bar

- Compatibility with fluids: Mineral oils, Synthetic fluids

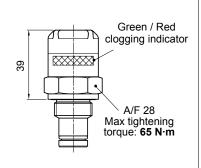
 $\label{eq:hfa} \textit{HFA}, \textit{HFB}, \textit{HFC} \ \textit{according to ISO} \ 2943$

- Degree protection: IP67 according to EN 60529

Electrical data

- Electrical connection: IEC 61076-2-101 D (M12)

- Power supply: 24 Vdc


- Analogue output: From 4 to 20 mA

- Thermal lockout: 30 °C (all output signals stalled up to 30 °C)

DVA

Visual Differential Indicator

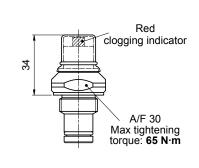
Settings	Ordering code
1.2 bar ±10%	DV A 12 x P01
2.0 bar ±10%	DV A 20 x P01
5.0 bar ±10%	DV A 50 x P01
7.0 bar ±10%	DV A 70 x P01
9.5 bar ±10%	DV A 95 x P01

Hydraulic symbol

Materials

- Body: Brass

Internal parts: Brass - Polyamide
Contacts: Silver
Seal: HNBR - FPM


Technical data

Reset: Automatic reset
Max working pressure: 420 bar
Proof pressure: 630 bar
Burst pressure: 1260 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943
- Degree protection: IP65 according to EN 60529

DVM Visual Differential Indicator Settings Ordering code 1.2 bar ±10% DV M 12 x P01 2.0 bar ±10% DV M 20 x P01 5.0 bar ±10% DV M 50 x P01 7.0 bar ±10% DV M 70 x P01 9.5 bar ±10% DV M 95 x P01

Hydraulic symbol

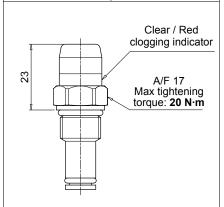
Materials

- Body: Brass

- Internal parts: Brass - Polyamide - Contacts: Silver - Seal: HNBR - FPM

Technical data

Reset: Manual reset
Max working pressure: 420 bar
Proof pressure: 630 bar
Burst pressure: 1260 bar


Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

- Degree protection: IP65 according to EN 60529

DVS Visual Differential Indicator

Settings	Ordering code
1.2 bar ±10%	DV S 12 H P01
2.5 bar ±10%	DV S 25 H P01
4.0 bar ±10%	DV S 40 H P01

Hydraulic symbol

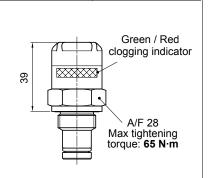
Materials

Body: Brass
Internal parts: Brass - Polyamide
Contacts: Silver
Seal: HNBR

Technical data

Reset: Automatic reset
Max working pressure: 16 bar
Proof pressure: 24 bar
Burst pressure: 48 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids


HFA, HFB, HFC according to ISO 2943

- Degree protection: IP67 according to EN 60529

X Hydraulic symbol

visual differential indicator	
Settings	Ordering code
1.2 bar ±10%	DV X 12 x P01
2.0 bar ±10%	DV X 20 x P01
5.0 bar ±10%	DV X 50 x P01
7.0 bar ±10%	DV X 70 x P01
9.5 har +10%	DV X 95 x P01

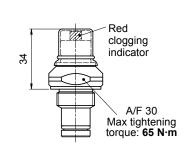
Vigual Differential Indicator

Materials

- Body: AISI 316L - Internal parts: AISI 316L - Polyamide

- Contacts: Silver - Seal: HNBR - MFQ

Technical data


Reset: Automatic reset
Max working pressure: 420 bar
Proof pressure: 630 bar
Burst pressure: 1260 bar

Working temperature: From -25 °C to +110 °C
 Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943

- Degree protection: IP65 according to EN 60529

DVY **Visual Differential Indicator** Settings Ordering code $1.2 \text{ bar } \pm 10\%$ DV Y 12 x P01 2.0 bar ±10% DV Y 20 x P01 5.0 bar ±10% DV Y 50 x P01 7.0 bar ±10% DV Y 70 x P01 9.5 bar ±10% DV Y 95 x P01

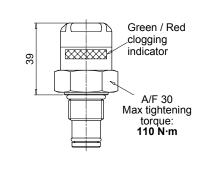
Hydraulic symbol

Materials

- Body: AISI 316L - Internal parts:

AISI 316L - Polyamide - Contacts: Silver - Seal: HNBR - MFQ

Technical data


- Reset: Manual reset - Max working pressure: 420 bar - Proof pressure: 630 bar - Burst pressure: 1260 bar

From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943 - Degree protection: IP65 according to EN 60529

DVZ **Visual Differential Indicator**

Settings	Ordering code
1.2 bar ±10%	DV Z 12 x P01
2.0 bar ±10%	DV Z 20 x P01
5.0 bar ±10%	DV Z 50 x P01
7.0 bar ±10%	DV Z 70 x P01
9.5 bar ±10%	DV Z 95 x P01

Hydraulic symbol

Materials

- Body: AISI 316L AISI 316L - Polyamide - Internal parts:

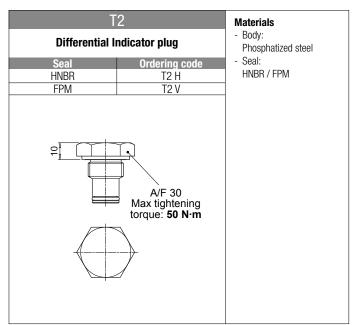
- Contacts: Silver HNBR - MFQ - Seal:

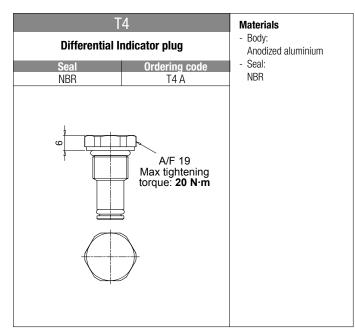
Technical data

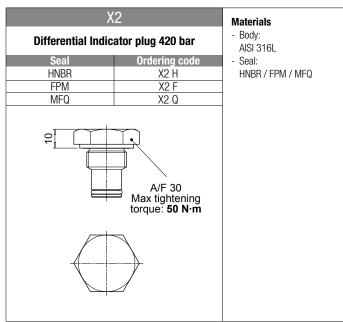
- Reset: Automatic reset - Max working pressure: 700 bar 1050 bar - Proof pressure: 2100 bar - Burst pressure:

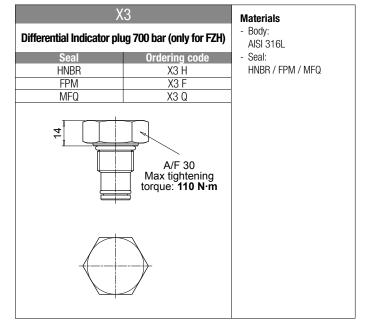
From -25 °C to +110 °C - Working temperature: - Compatibility with fluids: Mineral oils, Synthetic fluids

HFA, HFB, HFC according to ISO 2943


- Degree protection: IP65 according to EN 60529


Clogging Indicators


DIFFERENTIAL INDICATORS


Dimensions

706)

WORLDWIDE NETWORK

CANADA ♦ CHINA ♦ FRANCE ♦ GERMANY ♦ INDIA ♦ SINGAPORE UNITED ARAB EMIRATES ♦ UNITED KINGDOM ♦ USA

PASSION TO PERFORM

